•  
  •  
 

Abstract

By conducting finite element simulation, this paper analyzed the influence of the cavity volume and cavity location on the pullout and shear resistance of shear nails, and provided scientific basis for defining the error control range of shear nail construction. Based on the existing experimental results, a finite element analysis model was built. The final results show that the maximum pullout resistance bearing capacity of the shear nails remains basically unchanged with the increasing volume of the cavity around the head of the shear nails. When the position of a cavity with the same volume moves downward along the nail length from the nail head, the pullout resistance bearing capacity will decrease. Additionally, when the cavity position is within 1/3 of the shear nail length from the shear nail head, the decrease in pullout resistance bearing capacity is the most significant. When the position of the cavity of the same size moves from the nail head along the nail length direction to about 1/6 of the nail length, the shear resistance bearing capacity of the shear nail gradually increases, and remains stable from 1/6 to the nail tail. Therefore, the quality inspection standards for the concrete pouring process in the pouring area of shear nails should be more targeted.

Publication Date

11-8-2022

DOI

10.14048/j.issn.1671-2579.2022.05.018

First Page

97

Last Page

101

Submission Date

April 2025

Reference

[1] LAM D,EL-LOBOY E. Behavior of Headed Stud Shear Connect-Orsin Composite Beam[J].Journal of Structural Engineering,2005,131(1):96-107. [2] STEINBERGEP. Reliability of Tensile Loaded Cast-inPlace Headed-Stud Anchors for Concrete[J].ACIStructuralJournal,1999,96(3):430-436. [3] PALLARESL,HAJJARJF. Headed Steel Stud Anchors in Composite Structures, Part Ⅰ:Shear[J].Journal of Constructional Steel Research,2009,66(2):198-212. [4] ACI Committee 318.Building Code Requirements for Structural Concrete(ACI318-08)and Commentary [S].USA:American Concrete Institute,2008. [5] ACI Committee 349.Code Requirements for Nuclear Safety Related Concrete Structures(ACI349-90)and Commentary(349R-90)[S].USA:American Concrete Institute,1990. [6] AISC.SpecificationforStructuralSteelBuildings[S].USA:AmericanInstituteofSteelConstruction,2005. [7] FUCHSW W,ELIGEHAUSENR R,BREEN JE. Concrete Capacity Design(CCD) Approach for Fastening to Concrete[J].ACIStructuralJournal,1995,92(1):73-94. [8] Prestressed Concrete Institute. PCI Design Handbook Precast and Prestressed Concrete 6th Edition[S].PCI Industry Handbook Committee,2004. [9] FARROW C.BEN,FRIGUIImed,KLINGNER Richand E.Tensile Capacity of Single Anchorsin Concrete: Evaluation of Existing Formulas on a LRFD Basis[J].ACI StructureJournal,1996,93(1):128-137. [10] SMITH A L, COUCHMAN G H. Strength and ductility of headed stud shear connectors in profiled steel sheeting[J]. Journal of Constructional Steel Research, 2010, 66(6): 748-754. [11] 聂建国, 马原. 抗拔不抗剪栓钉连接件抗拔性能试验研究[J]. 特种结构, 2015, 32(3): 6-12. NIE Jianguo, MA Yuan. Experimental study on uplift performance of a new type of uplift restricted-slip free studs[J]. Special Structures, 2015, 32(3): 6-12. [12] 丁敏, 薛伟辰, 王骅. 钢-高性能混凝土组合梁栓钉连接件抗剪性能的试验[J]. 工业建筑, 2007, 37(8): 9-13. DING Min, XUE Weichen, WANG Hua. Experiment on stud shear connectors in steel-high performance concrete composite beams[J]. Industrial Construction, 2007, 37(8): 9-13. [13] 汪炳, 黄侨, 荣学亮. 基于ABAQUS的栓钉连接件承载能力分析及验证[J]. 中外公路, 2017, 37(2): 126-131. WANG Bing, HUANG Qiao, RONG Xueliang. Analysis and verification of bearing capacity of stud connectors based on ABAQUS[J]. Journal of China & Foreign Highway, 2017, 37(2): 126-131. [14] 张金, 周志祥, 向红, 等. 钢-混凝土组合连续梁力学性能分析[J]. 中外公路, 2012, 32(1):120-125. ZHANG Jin, ZHOU Zhixiang, XIANG Hong, et al. Mechanical properties analysis of steel-concrete composite continuous beam[J]. Journal of China & Foreign Highway, 2012, 32(1):120-125. [15] 封博文, 刘永健, 彭元诚, 等. 施工误差对剪力钉工作性能的影响[J]. 建筑科学与工程学报, 2018, 35(1): 119-126. FENG Bowen, LIU Yongjian, PENG Yuancheng, et al. Influence of construction error on working performance of shear stud[J]. Journal of Architecture and Civil Engineering, 2018, 35(1): 119-126. [16] 李成君, 周志祥, 黄雅意, 等. 装配式组合梁剪力钉抗剪承载力研究[J]. 中国公路学报, 2017, 30(3): 264-270. LI Chengjun, ZHOU Zhixiang, HUANG Yayi, et al. Research on shear resistance of shear studs in prefabricated composite beam[J]. China Journal of Highway and Transport, 2017, 30(3): 264-270. [17] 李慧, 刘永健, 张宁, 等. 冻融循环作用后栓钉连接件受剪性能试验研究[J]. 建筑结构学报, 2019, 40(5): 149-155. LI Hui, LIU Yongjian, ZHANG Ning, et al. Experimental study on shear performance of stud shear connector after undergoing freeze-thaw cycles[J]. Journal of Building Structures, 2019, 40(5): 149-155. [18] 谢宜琨, 方国强, 张宁, 等. 低温下栓钉连接件的抗剪性能试验研究[J]. 建筑结构, 2020, 50(9): 86-91. XIE Yikun, FANG Guoqiang, ZHANG Ning, et al. Experimental study on shear resistance of stud connectors at low temperature[J]. Building Structure, 2020, 50(9): 86-91. [19] 周伟翔. 连续组合梁桥钢与混凝土连接试验研究[D]. 上海: 同济大学, 2007. ZHOU Weixiang. Experimental study on connection between steel and concrete of continuous composite beam bridge[D]. Shanghai: Tongji University, 2007. [20] 蔺钊飞, 刘玉擎. 焊钉连接件抗拉承载力试验[J]. 同济大学学报(自然科学版), 2015, 43(9): 1313-1319, 1331. LIN Zhaofei, LIU Yuqing. Experimental study on static behavior of headed studs under tension force[J]. Journal of Tongji University (Natural Science), 2015, 43(9): 1313-1319, 1331.

Share

COinS