Abstract
To clarify the effect of steel fiber content on axial tensile performance of ultra-high performance concrete (UHPC) materials, this paper conducted axial tensile full process tests on 16 UHPC specimens from four groups with steel fiber volume content ranging from 0% to 3%. As a result, the stress strain curves of UHPC under different fiber contents were obtained. Additionally, the effect of steel fiber content on the tensile strength, deformation performance, energy consumption ability, and ductility of UHPC was analyzed. The experimental results show that UHPC axial tensile specimens without steel fiber exhibit obvious brittle failure characteristics of single joint cracking. When the fiber content increases to more than 2%, obvious ductility failure characteristics of multiple joint cracking is shown. The uploading curve and other UHPC axial tensile stress strain curves show approximate linear variation between the initial loading, matrix cracking, and characteristic points such as the peak point, limit point, and unloading point. When the limit point is reloaded after unloading, the path of the monotonic loading curve is still basically returned to. As the steel fiber content increases, the initial crack stress and strain of UHPC materials slightly rise, with the significantly improved peak stress, peak strain, limit strain, residual strain, energy consumption ability, and ductility. The elastic moduli under tension and compression are similar, and the plastic energy consumption ability of the materials is mainly provided by the plastic deformation of the fibers in the matrix.
Publication Date
11-8-2022
DOI
10.14048/j.issn.1671-2579.2022.05.022
First Page
120
Last Page
123
Submission Date
April 2025
Recommended Citation
Teng, Zhou; Bingzhi, Pei; Zhengyu, Huang; Dajun, Pei; Rui, Xu; and Zhi, Fang
(2022)
"Influence of Steel Fiber Content on UHPC Axial Tensile Performance,"
Journal of China & Foreign Highway: Vol. 42:
Iss.
5, Article 22.
DOI: 10.14048/j.issn.1671-2579.2022.05.022
Available at:
https://zwgl1980.csust.edu.cn/journal/vol42/iss5/22
Reference
[1] 陈宝春, 季韬, 黄卿维, 等. 超高性能混凝土研究综述[J]. 建筑科学与工程学报, 2014, 31(3): 1-24. CHEN Baochun, JI Tao, HUANG Qingwei, et al. Review of research on ultra-high performance concrete[J]. Journal of Architecture and Civil Engineering, 2014, 31(3): 1-24. [2] FEHLINGE,SCHMIDT M,WALRAVENJ,etal.UltraHighPerformanceConcrete:Fundamental-Design-Example[M].Wilhelm Ernst& Sohn, Verlag für Architektur und Technische Wissenschaften GmbH & Co.KG, Rotherstraβe,2014. [3] 原海燕, 安明喆, 贾方方, 等. 活性粉末混凝土轴拉性能试验研究[J]. 工程力学, 2011, 28(S1): 141-144. YUAN Haiyan, AN Mingzhe, JIA Fangfang, et al. Experimental research on uniaxial tensile performance of reactive powder concrete[J]. Engineering Mechanics, 2011, 28(S1): 141-144. [4] 杨志慧. 不同钢纤维掺量活性粉末混凝土的抗拉力学特性研究[D]. 北京: 北京交通大学, 2006. YANG Zhihui. Study on tensile properties of reactive powder concrete with different steel fiber content[D]. Beijing: Beijing Jiaotong University, 2006. [5] HASSAN A M T, JONES S W, MAHMUD G H. Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC)[J]. Construction and Building Materials, 2012, 37: 874-882. [6] 杜任远,陈宝春,沈秀将.不同方法测试的超高性能混凝土抗拉强度[J].材料导报,2016,30(S2):483-486,520. Du Renyuan, Chen Baochun, Shen Xiujiang. "Tensile Strength of Ultra-High Performance Concrete Tested by Different Methods" [J]. Materials Review, 2016, 30(S2): 483–486, 520. [7] 王俊颜, 耿莉萍, 郭君渊, 等. UHPC的轴拉性能与裂缝宽度控制能力研究[J]. 哈尔滨工业大学学报, 2017, 49(12): 165-169. WANG Junyan, GENG Liping, GUO Junyuan, et al. Experimental study on crack width control ability of ultra? high performance concrete[J]. Journal of Harbin Institute of Technology, 2017, 49(12): 165-169. [8] WILLE K, EL-TAWIL S, NAAMAN A E. Properties of strain hardening ultra high performance fiber reinforced concrete (UHP-FRC) under direct tensile loading[J]. Cement and Concrete Composites, 2014, 48: 53-66. [9] 宋焱. 级配纤维超高性能混凝土抗拉性能研究[D]. 长沙: 湖南大学, 2006. SONG Yan. Study on tensile properties of graded fiber ultra-high performance concrete[D]. Changsha: Hunan University, 2006. [10] 徐礼华, 梅国栋, 黄乐, 等. 钢-聚丙烯混杂纤维混凝土轴心受拉应力-应变关系研究[J]. 土木工程学报, 2014, 47(7): 35-45. XU Lihua, MEI Guodong, HUANG Yue, et al. Study on uniaxial tensile stress-strain relationship of steel-polypropylene hybrid fiber reinforced concrete[J]. China Civil Engineering Journal, 2014, 47(7): 35-45. [11] 徐力斌. 玄武岩-聚丙烯混杂纤维活性粉末混凝土力学性能试验研究[D]. 吉林: 东北电力大学, 2018. XU Libin. Experimental study on mechanical properties of basalt-polypropylene hybrid fiber reactive powder concrete[D]. Jilin: Northeast Dianli University, 2018. [12] 张哲, 邵旭东, 李文光, 等. 超高性能混凝土轴拉性能试验[J]. 中国公路学报, 2015, 28(8): 50-58. ZHANG Zhe, SHAO Xudong, LI Wenguang, et al. Axial tensile behavior test of ultra high performance concrete[J]. China Journal of Highway and Transport, 2015, 28(8): 50-58. [13] GRAYBEAL B,BABYF, MARCHAND P,et al. Direct and Flexural Tension Test Methods for Determination of the Tensile Stress-Strain Response of UHPFRC[C].Kassel International Conference,HIPERMAT,2012:395-418. [14] FUJIKAKE K, SENGA T, UEDA N, et al. Effects of strain rate on tensile behavior of reactive powder concrete[J]. Journal of Advanced Concrete Technology, 2006, 4(1): 79-84. [15] WILLE K, KIM D J, NAAMAN A E. Strain-hardening UHP-FRC with low fiber contents[J]. Materials and Structures, 2011, 44(3): 583-598. [16] 刘建忠, 韩方玉, 周华新, 等. 超高性能混凝土拉伸力学行为的研究进展[J]. 材料导报, 2017, 31(23): 24-32. LIU Jianzhong, HAN Fangyu, ZHOU Huaxin, et al. An overview on tensile behavior of ultra-high performance concrete[J]. Materials Reports, 2017, 31(23): 24-32. [17] 超高性能混凝土基本性能与试验方法: T/CBMF 37*T/CCPA 7-2018[S]. Basic properties and test methods of ultra-high performance concrete: T/CBMF 37*T/CCPA 7-2018[S]. [18] 国家质量监督检验检疫总局, 中国国家标准化管理委员会. 活性粉末混凝土: GB/T 31387—2015[S]. 北京: 中国标准出版社, 2015. General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Standardization Administration of the People’s Republic of China. Reactive powder concrete: GB/T 31387—2015[S]. Beijing: Standards Press of China, 2015.