•  
  •  
 

Abstract

To investigate the effect of wear of wear plates of friction pendulum bearings on the seismic performance of long-span continuous girder bridges, this paper conducted a rapid sliding performance test of friction pendulum bearings to study the wear degree of modified polytetrafluoroethylene wear plates in the rapid performance test. Meanwhile, by taking the 6 × 110 m long-span continuous girder bridge as the engineering background, a spatial three-dimensional finite element model was built to compare and analyze the seismic response of the bridge structure under different wear degrees of friction pendulum bearings. The results indicate that the modified polytetrafluoroethylene wear plates inside the friction pendulum bearings suffer severe wear during the rapid performance test, with the friction coefficient first increasing to 0.09 and then decreasing to 0.016. The sliding displacement of the bearing reaches its maximum and collides rigidly with the limit block. Additionally, the wear of wear plates leads to an increase in internal forces in key sections of the bridge, causing plastic deformation at the bottom of the pier and affecting the seismic performance of the bridge structure.

Publication Date

11-8-2022

DOI

10.14048/j.issn.1671-2579.2022.05.026

First Page

145

Last Page

150

Submission Date

April 2025

Reference

[1] 项海帆, 潘洪萱, 张圣城, 等. 中国桥梁史纲[M]. 上海: 同济大学出版社, 2009. XIANG Haifan, PAN Hongxuan, ZHANG Shengcheng, et al. Outline of Chinese bridge history[M]. Shanghai: Tongji University Press, 2009. [2] 张喜刚, 刘高, 马军海, 等. 中国桥梁技术的现状与展望[J]. 科学通报, 2016, 61(4): 415-425. ZHANG Xigang, LIU Gao, MA Junhai, et al. Status and prospect of technical development for bridges in China[J]. Chinese Science Bulletin, 2016, 61(4): 415-425. [3] 夏修身, 崔靓波, 陈兴冲. 超长联大跨连续梁桥摩擦摆支座隔震研究[J]. 工程力学, 2015, 32(S1): 167-171. XIA Xiushen, CUI Jingbo, CHEN Xingchong. Seismic isolation of long span and super long unit continuous beam bridge with friction pendulum bearings[J]. Engineering Mechanics, 2015, 32(S1): 167-171. [4] 李建中, 管仲国. 基于性能桥梁抗震设计理论发展[J]. 工程力学, 2011, 28(S2): 24-30. LI Jianzhong, GUAN Zhongguo. Performance-based seismic design for bridges[J]. Engineering Mechanics, 2011, 28(S2): 24-30. [5] 王力, 杨延超, 刘世忠, 等. 长联大跨摩擦摆支座隔震连续梁桥多维地震反应分析[J]. 世界地震工程, 2020, 36(2): 129-137. WANG Li, YANG Yanchao, LIU Shizhong, et al. Multi-dimensional seismic response analysis of long-span isolated continuous girder bridge with friction pendulum system[J]. World Earthquake Engineering, 2020, 36(2): 129-137. [6] 唐志, 刘军, 徐向东, 等. ε型钢阻尼减震支座在连续箱梁桥中的减隔震应用效果分析[J]. 中外公路, 2019, 39(2): 125-129. TANG Zhi, LIU Jun, XU Xiangdong, et al. Journal of China & Foreign Highway, 2019, 39(2): 125-129. [7] 占玉林, 张磊, 张强, 等. 摩擦摆支座参数对隔震桥梁地震响应的影响[J]. 桥梁建设, 2018, 48(3): 45-49. ZHAN Yulin, ZHANG Lei, ZHANG Qiang, et al. Effects of parameters of friction pendulum bearings on seismic responses of seismically isolated bridge[J]. Bridge Construction, 2018, 48(3): 45-49. [8] 王宝夫,韩强,杜修力.滑动摩擦支座隔震桥梁地震反应分析[J].土木工程学报,2016,49(S2):85-90. Wang Baofu, Han Qiang, Du Xiuli. Seismic response analysis of isolated bridges with sliding friction bearings[J]. China Civil Engineering Journal, 2016, 49(S2): 85–90. [9] 陈鹏, 周颖. 摩擦摆支座隔震结构实用设计方法[J]. 地震工程与工程振动, 2017, 37(1): 56-63. CHEN Peng, ZHOU Ying. The applicable design method of isolated structure using friction pendulum system[J]. Earthquake Engineering and Engineering Dynamics, 2017, 37(1): 56-63. [10] 赵桂峰, 马玉宏, 简涛, 等. 摩擦摆支座性能劣化对港珠澳隔震桥梁全寿命期抗震性能的影响[J]. 中国公路学报, 2016, 29(12): 10-16. ZHAO Guifeng, MA Yuhong, JIAN Tao, et al. Effects of performance deterioration of friction pendulum bearings on seismic behavior of Hong Kong-Zhuhai-Macao isolated bridges in life-cycle period[J]. China Journal of Highway and Transport, 2016, 29(12): 10-16. DOI: 10.3969/j.issn.1001-7372.2016.12.002.

Share

COinS