•  
  •  
 

Abstract

To investigate the influence of key parameters such as the void content and water ash ratio on the performance of pervious concrete, this paper employed compressive strength, flexural strength, and flowability tests to analyze the effect of changes in the void content, water ash ratio, water-reducing agent, and curing age on the working and mechanical properties of pervious concrete. The experimental results show that the flowability index can evaluate the working properties of pervious concrete. With the rising content of the water-reducing agent, the flowability index increases, while the amount of the water-reducing agent utilized to achieve the same flowability also relatively decreases with the increasing water ash ratio. It is recommended to control the flowability at 240-250 mm. Meanwhile, as the water ash ratio increases, the compressive strength and flexural strength present a decreasing trend. With the rising void content, the compressive strength and flexural strength also significantly decrease, and the influence of void content changes on compressive strength and flexural strength is much higher than that of changes in the water ash ratio. With the increasing curing age, the compressive strength and flexural strength values show a significant increasing trend. With the increasing flowability, both compressive strength and flexural strength present an increasing trend, with the significantly growing flexural strength value.

Publication Date

11-8-2022

DOI

10.14048/j.issn.1671-2579.2022.05.042

First Page

232

Last Page

236

Submission Date

April 2025

Reference

[1] 许耀, 吴庆, 史文浩, 等. 不同短切纤维对高强透水混凝土性能的影响[J]. 混凝土与水泥制品, 2019(10): 40-43. XU Yao, WU Qing, SHI Wenhao, et al. Effects of different chopped fibers on properties of the high strength pervious concrete[J]. China Concrete and Cement Products, 2019(10): 40-43. [2] 杨江超, 方从启, 董文燕, 等. 胶结层对透水混凝土性能影响研究[J]. 混凝土, 2019(7): 11-14. YANG Jiangchao, FANG Congqi, DONG Wenyan, et al. Effect of cementation layer on the performance of pervious concrete[J]. Concrete, 2019(7): 11-14. [3] 肖力光, 林侠. 复合胶凝体系对透水混凝土强度的影响[J]. 混凝土, 2019(7): 74-75, 78. XIAO Liguang, LIN Xia. Influence of composite cementitious system on strength of pervious concrete[J]. Concrete, 2019(7): 74-75, 78. [4] 郑木莲, 邓朝显, 梁行行, 等. 海绵城市透水水泥混凝土路面结构力学响应分析[J]. 路基工程, 2019(2): 71-77. ZHENG Mulian, DENG Chao Xian, LIANG Hangxing et al. Mechanical response analysis of permeable cement concrete pavenment structure in sponge city[J]. Subgrade Engineering, 2019(2): 71-77. [5] 黄美燕. 硫酸盐腐蚀对透水混凝土抗压强度及透水性能的影响[J]. 新型建筑材料, 2019, 46(2): 40-44. HUANG Meiyan. Effect of sulfate corrosion on compressive strength and permeable properties of pervious concrete[J]. New Building Materials, 2019, 46(2): 40-44. [6] 周玉玲, 明廷臻, 万美南. 透水混凝土强度及透水性能影响因素研究[J]. 中国测试, 2021, 47(10): 155-160. ZHOU Yuling, MING Tingzhen, WAN Meinan. Research on influencing factors of permeable concrete strength and water permeability[J]. China Measurement & Test, 2021, 47(10): 155-160. [7] 谭燕, 易晨光, 胡安迪, 等. 透水混凝土路面堵塞及透水性能恢复试验研究[J]. 中南大学学报(自然科学版), 2021, 52(7): 2480-2490. TAN Yan, YI Chenguang, HU Andi, et al. Experimental study on clogging process and restoration of permeable concrete pavement[J]. Journal of Central South University (Science and Technology), 2021, 52(7): 2480-2490. [8] 易晨光, 谭燕, 张维维, 等. 透水混凝土的透水性能试验研究[J]. 混凝土, 2021(1): 110-114. YI Chenguang, TAN Yan, ZHANG Weiwei, et al. Experimental study on water permeability of pervious concrete[J]. Concrete, 2021(1): 110-114. [9] 董雨明, 韩森, 郝培文. 路用多孔水泥混凝土配合比设计方法研究[J]. 中外公路, 2004, 24(1): 86-89. Dong Yuming, Han Sen, Hao Peiwen. Research on mix design method for porous cement concrete used in roads[J]. Journal of China & Foreign Highway, 2004, 24(1): 86–89. [10] 荀永宁, 冯泽慧, 巫广义, 等. 纳米SiO2与粉煤灰的增强效应对透水混凝土性能的影响[J]. 南京工业大学学报(自然科学版), 2019, 41(4): 450-455. XUN Yongning, FENG Zehui, WU Guangyi, et al. Influence of enhanced effect of nano-silica and fly ash on properties of pervious concrete[J]. Journal of Nanjing Tech University (Natural Science Edition), 2019, 41(4): 450-455.

Share

COinS