•  
  •  
 

Corresponding Author

于翔鹏yu xiang peng

Abstract

The physical and mechanical properties of road slope soil in the mountainous area of the middle reaches of the Bailongjiang River are prone to deterioration under the strong dry and wet environment formed by concentrated rainfall and high surface temperature in summer, resulting in deformation and instability of road slope soil. To study the degradation process of road slope soil in such drying-wetting conditions, this paper selected the Huama landslide soil as the research object. Meanwhile, it tested the indicators such as particle grading composition, density, liquid plastic limit, shear strength, and uniaxial compressive strength of the soil under multiple times of strong drying-wetting and daily drying-wetting action. The results show that the above indicators undergo significant changes after multiple different drying-wetting cycles, and the change rate in each indicator of the sample after strong drying-wetting cycles is greater than that of daily drying-wetting cycles. Under multiple times of drying-wetting action, the sand content inside the soil decreases, the clay content increases, and the pores expand, thus increasing the uniformity of the sampled particles and the porosity, and reducing roundness.

Publication Date

11-8-2022

DOI

10.14048/j.issn.1671-2579.2022.05.005

First Page

24

Last Page

29

Submission Date

April 2025

Reference

[1] 杨为民, 黄晓, 张春山, 等. 白龙江流域坪定—化马断裂带滑坡特征及其形成演化[J]. 吉林大学学报(地球科学版), 2014, 44(2): 574-583. YANG Weimin, HUANG Xiao, ZHANG Chunshan, et al. Deformation behavior of landslides and their formation mechanism along Pingding-Huama active fault in Bailongjiang River Region[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(2): 574-583. [2] 崔凯, 王珮, 谌文武, 等. 不同干湿作用下斜坡表层千枚岩劣化实验研究[J]. 工程地质学报, 2019, 27(2): 230-238. CUI Kai, WANG Pei, CHEN Wenwu, et al. Experimental study on deterioration of phyllite from slope surface under conditions of diffreent dry-wet cycles[J]. Journal of Engineering Geology, 2019, 27(2): 230-238. [3] TCHALEMKE J S. Similarities between shear zones of different magnitudes[J]. Gealogical Society of America, Bulletin, 1970, 81:47-52. [4] SKEMPTON A W. Residual strength of clays in landslides, folded strata and the laboratory[J]. Géotechnique, 1985, 35(1): 3-18. [5] CHANDLER R J. Back analysis techniques for slope stabilization works: a case record[J]. Géotechnique, 1977, 27(4): 479-495. [6] STARK T D, EID H T. Slope stability analysis in stiff fissured clays[J].Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(4): 335-343. [7] KANJI M A. The relationship between drained friction angles and Atterberg limits of natural soils[J]. Géotechnique, 1974, 24(4): 671-674. [8] TIWARI B, MARUI H. Objective oriented multistage ring shear test for shear strength of landslide soil[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(2): 217-222. [9] BHAT D R, BHANDARY N P, YATABE R. Residual-state creep behavior of typical clayey soils[J]. Natural Hazards, 2013, 69(3): 2161-2178. [10] 蒋秀姿, 宝萍. 缓慢复活型滑坡滑带土的蠕变性质与特征强度试验研究[J]. 岩土力学, 2015, 36(2): 495-501, 549. JIANG Xiuzi, BAO Ping. Creep behavior of slip zone of reactivated slow-moving landslide and its characteristic strength[J]. Rock and Soil Mechanics, 2015, 36(2): 495-501, 549. [11] 汤文, 姚志宾, 李邵军, 等. 水化学作用对滑坡滑带土的物理力学特性影响试验研究[J]. 岩土力学, 2016, 37(10): 2885-2892. TANG Wen, YAO Zhibin, LI Shaojun, et al. Effect of pore water chemistry on physical and mechanical properties of sliding-zone soil: an experimental study[J]. Rock and Soil Mechanics, 2016, 37(10): 2885-2892. [12] 吴国鹏, 谌文武, 崔凯, 等. 冻融作用下全风化千枚岩力学性质研究[J]. 兰州大学学报(自然科学版), 2019, 55(3): 388-394. WU Guopeng, CHEN Wenwu, CUI Kai, et al. Study on the mechanism of weathered phyllite under freezing and thawing conditions[J]. Journal of Lanzhou University (Natural Sciences), 2019, 55(3): 388-394. [13] 吕光东. 干湿循环作用下粉质黏土抗剪强度的试验研究[J]. 中外公路, 2022, 42(4): 180-184. LYU Guangdong. Experimental study on shear strength of silty clay under dry-wet cycle[J]. Journal of China & Foreign Highway, 2022, 42(4): 180-184. [14] 李长贵, 胡健坤. 干湿循环作用下高液限粉土动态回弹模量试验研究[J]. 中外公路, 2021, 41(3): 347-351. LI Changgui, HU Jiankun. Experimental study on dynamic resilience modulus of high liquid limit silt under dry-wet cycle[J]. Journal of China & Foreign Highway, 2021, 41(3): 347-351. [15] 倪梅三,华跃,曾学敏.基于Geostudio的某土石坝稳定性流固耦合分析[J].矿业快报,2008(2):23-25. Ni Meisan, Hua Yue, Zeng Xuemin. Fluid-Solid coupling analysis of a earth-rock dam stability based on geostudio[J]. Mining Express, 2008(2): 23-25. [16] 陈浩,杨春和,任伟中.蠕动滑坡变形机制的理论分析与模型试验研究[J].岩石力学与工程学报,2008,27(S2):3705-3711. Chen Hao, Yang Chunhe, Ren Weizhong. Theoretical analysis and model test research on deformation mechanism of creep landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(S2): 3705-3711. [17] 段炎冲, 安再展, 李光耀, 等. 基于 GeoStudio 的某土石坝整治前后渗流及坝坡稳定分析[J]. 西北水电, 2013(6): 74-77. DUAN Yanchong, AN Zaizhan, LI Guangyao, et al. GeoStudio-based analysis on seepage flow and slope stability of one earth-rock fill dam before and after treatment[J]. Northwest Hydropower, 2013(6): 74-77. [18] 杨柳. 山西浑源县落子洼村滑坡形成机理初步分析[J]. 西部探矿工程, 2018, 39(9): 12-13, 16. YANG Liu. Preliminary analysis on the formation mechanism of landslides in luoziwa village, Hunyuan County, Shanxi[J]. West-China Exploration Engineering, 2018, 39(9): 12-13, 16. [19] 王峻岭,杨利乐.基于GeoStudio的黄河大堤渗流稳定性分析[J].中国水运,2008,8(8):162,164. Wang Junling, Yang Lile. Seepage Stability analysis of yellow river embankment based on geostudio[J]. China Water Transport, 2008, 8(8): 162, 164. [20] 林悦奇. Geostudio软件在土坝渗流稳定分析中的应用[J]. 水利规划与设计, 2018(3): 154-158. LIN Yueqi. Water Resources Planning and Design, 2018(3): 154-158. [21] 胡凯衡, 葛永刚, 崔鹏, 等. 对甘肃舟曲特大泥石流灾害的初步认识[J]. 山地学报, 2010, 28(5): 628-634. HU Kaiheng, GE Yonggang, CUI Peng, et al. Preliminary analysis of extra-large-scale debris flow disaster in Zhouqu County of Gansu Province[J]. Mountain Research, 2010, 28(5): 628-634.

Share

COinS