Abstract
In order to determine the effect of hydration heat of the post-cast section of cast-in-place prestressed concrete box girder on its own section and adjacent poured section during the construction process, the mechanical properties, temperature field of hydration heat, and strain field of early-age concrete N13 section of the southern span concrete box girder were measured on site against the background of Wuxue Yangtze River Bridge. The finite element models of the N13 section and its adjacent poured sections were established to analyze the development law of hydration heat temperature field and stress field between adjacent sections of the concrete box girder. The results show that under the action of hydration heat at the early age of the post-cast section, the concrete of the post-cast section cannot move freely and thus produce compressive stress due to the transverse bridge constraint effect of adjacent sections. The temperature-induced tensile stress in the inner web and roof of the adjacent poured sections at about 1.0 m away from the joint surface is relatively large, with the maximum tensile stress being 3.93 MPa and 4.54 MPa, respectively, which exceeds the tensile strength of the concrete sections at the corresponding time and may lead to the cracking of the box girder. The effective measures to prevent concrete cracking are to reduce the temperature rise of hydration heat and stretch the horizontal and vertical prestress in the adjacent sections before pouring of post-cast section.
Publication Date
11-24-2023
DOI
10.14048/j.issn.1671-2579.2023.05.017
First Page
96
Last Page
103
Submission Date
March 2025
Recommended Citation
Jinsheng, HONG; Luming, LIU; Bingzhi, PEI; Zuhuang, ZHU; Ning, HUANG; and Zhi, FANG
(2023)
"Measurement and analysis of hydration heat effect between adjacent segments of cast‑in‑place PC box girder,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
5, Article 17.
DOI: 10.14048/j.issn.1671-2579.2023.05.017
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss5/17
Reference
[1] 中冶建筑研究总部有限公司. 大体积混凝土施工标准: GB 50496—2018[S]. 北京: 中国计划出版社, 2018. Central Research Institute of Building and Construction Co.,Ltd.. Standard for construction of mass concrete: GB 50496—2018[S]. Beijing: China Planning Press, 2018. [2] 中交一公局集团有限公司. 公路桥涵施工技术规范: JTG/T 3650—2020[S]. 北京: 人民交通出版社, 2020. China First Highway Engineering Group Co., Ltd. Technical Specifications for Construction of Highway Bridges and Culverts: JTG/T 3650—2020[S]. Beijing: China Communications Press, 2020. [3] PODOLNY W. The cause of cracking in post-tensioned concrete box girder bridges and retrofit procedures[J]. PCI Journal, 1985, 30(2): 82-139. [4] ACI Committee 224.. 224R-01(08): Control of Cracking in Concrete Structures[M]. American Concrete Institute, 2001. [5] 吴云鹏, 陈经伟, 周天应. 矮塔斜拉桥宽幅无索区箱梁底板裂缝成因分析[J]. 中外公路, 2022, 42(3): 131-135. WU Yunpeng, CHEN Jingwei, ZHOU Tianying. Cause analysis of cracks in box girder bottom plate in wide cable-free area of low-pylon cable-stayed bridge[J]. Journal of China & Foreign Highway, 2022, 42(3): 131-135. [6] 林志斌. 连续刚构箱形梁腹板早龄期裂缝成因及防裂措施仿真分析[J]. 中外公路, 2022, 42(5): 124-131. LIN Zhibin. Simulation analysis on the causes of early age cracks in the web of continuous rigid frame box beam and its prevention measures[J]. Journal of China & Foreign Highway, 2022, 42(5): 124-131. [7] 卢江波, 方鸿, 戴小冬. 倒箱形截面门式框架斜桥顶板底面斜向裂缝成因分析[J]. 中外公路, 2019, 39(5): 165-167. LU Jiangbo, FANG Hong, DAI Xiaodong. Cause analysis of oblique cracks on the top and bottom of inclined bridge with inverted box-section portal frame[J]. Journal of China & Foreign Highway, 2019, 39(5): 165-167. [8] 张莉. 高速公路预应力混凝土组合箱梁裂缝加固技术[J]. 山西建筑, 2019, 45(12): 131-133. ZHANG Li. Crack reinforcement technology for prestressed concrete composite box girder of expressway[J]. Shanxi Architecture, 2019, 45(12): 131-133. [9] 毛建平, 唐赓, 蒙方成, 等. 预应力混凝土连续桁梁刚构桥裂缝分析及加固[J]. 中外公路, 2020, 40(3): 168-173. MAO Jianping, TANG Geng, MENG Fangcheng, et al. Crack analysis and reinforcement of prestressed concrete continuous truss beam rigid frame bridge[J]. Journal of China & Foreign Highway, 2020, 40(3): 168-173. [10] 王建强, 吕忠达, 赵卓, 等. 预应力混凝土连续箱梁顶板早期裂缝控制研究[J]. 铁道工程学报, 2019, 36(9): 43-48. WANG Jianqiang, (LÜ/LV/LU/LYU) Zhongda, ZHAO Zhuo, et al. Control of the early cracks in the top slab of the prestressed concrete continuous box girder[J]. Journal of Railway Engineering Society, 2019, 36(9): 43-48. [11] 袁军峰, 张建东, 刘朵, 等. 大跨连续箱梁桥0#块高强混凝土水化热及温控措施分析[J]. 中外公路, 2019, 39(5): 97-101. YUAN Junfeng, ZHANG Jiandong, LIU Duo, et al. Analysis of hydration heat and temperature control measures of high strength concrete in 0# block of long-span continuous box girder bridge[J]. Journal of China & Foreign Highway, 2019, 39(5): 97-101. [12] 史雨安, 方吕, 周世军, 等. 大体积混凝土承台水化热与早期温控措施研究分析[J]. 水利与建筑工程学报, 2022, 20(3): 192-199. SHI Yu’an, FANG Lü, ZHOU Shijun, et al. Hydration heat and early temperature control measures of mass concrete cap[J]. Journal of Water Resources and Architectural Engineering, 2022, 20(3): 192-199. [13] ZIA P,CANER A.Cracking in large‑sized long‑span prestressed concrete AASHTO girders[Z].Construction Management, 1993. [14] MYERS J J, CARRASQUILLO R L. Influence of hydration temperature on durability and mechanical property performance of prestressed and precast high-performance concrete beams[J]. Transportation Research Record: Journal of the Transportation Research Board, 2000, 1696(1): 131-142. [15] 汪建群.大跨预应力混凝土箱梁桥早期开裂和远期下挠控制[D].长沙:湖南大学,2011. Wang Jianqun. Control of Early Cracking and Long-term Deflection in Long-span Prestressed Concrete Box Girder Bridges [D]. Changsha: Hunan University, 2011 [16] 李浩.混合梁斜拉桥PC宽箱梁施工过程受力分析[D].长沙:湖南大学,2019. Li Hao. Force analysis of PC wide box girder of hybrid girder cable-stayed bridge during construction [ D ]. Changsha : Hunan University, 2019. [17] 陈常松, 杜潇. 基于温致效应的宽幅PC箱梁早期裂纹成因分析[J]. 交通科学与工程, 2019, 35(1): 44-49. CHEN Changsong, DU Xiao. Analysis on the cause of early crack of wide PC box girder based on temperature induced effects[J]. Journal of Transport Science and Engineering, 2019, 35(1): 44-49. [18] 蔡绍怀,左怀西.高强混凝土的抗裂强度[J].土木工程学报,1992,25(2):23‑31. Cai Shaohuai, Zuo Haixi. Crack Resistance of High Strength Concrete [J]. China Civil Engineering Journal, 1992, 25(2): 23-31. [19] 朱伯芳. 大体积混凝土温度应力与温度控制[M]. 北京: 中国电力出版社, 1999. ZHU (BaiBo)(Fang). Thermal stresses and temperature control of mass concrete[M]. Beijing: China Electric Power Press, 1999. [20] 钟翔, 李北星. 温度匹配养护对大掺量矿物掺合料混凝土抗压强度及早期水化性能的影响[J]. 硅酸盐通报, 2019, 38(10): 3080-3086. ZHONG Xiang, LI Beixing. Effect of temperature match curing on compressive strength and early hydration properties of concrete with high volume of mineral admixture[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(10): 3080-3086. [21] 张斌. 石首长江公路大桥南塔承台超大体积混凝土施工温控研究[J]. 中外公路, 2021, 41(2): 233-236. ZHANG Bin. Study on construction temperature control of super-large volume concrete in the south tower cap of Shishou Yangtze River Highway Bridge[J]. Journal of China & Foreign Highway, 2021, 41(2): 233-236. [22] 中交武汉港湾工程设计研究院有限公司. 水运工程大体积混凝土温度裂缝控制技术规程: JTS 202-1—2010[S]. 北京: 人民交通出版社, 2010. Cccc WuHan Harbour Engineering Design And Research Co., Ltd. Technical Specification for Thermal Cracking Control of Mass Concrete of Port and Waterway Engineering: JTS 202-1—2010[S]. Beijing: China Communications Press, 2010. [23] 杨文.主跨钢箱梁混合架设的大跨混合梁斜拉桥施工控制研究[D].长沙:湖南大学,2017. Yang Wen. Research on Construction Control of Large Span Hybrid Beam Cable-Stayed Bridge with Main Span Steel Box Girder Hybrid Erection [D]. Changsha: Hunan University, 2017. [24] 刘佳桐, 朱伟庆, 丁雪英, 等. EPS内模预应力混凝土小箱梁温度特性分析[J]. 中外公路, 2020, 40(4): 124-130. LIU Jiatong, ZHU Weiqing, DING Xueying, et al. Analysis of temperature characteristics of EPS internal model prestressed concrete small box girder[J]. Journal of China & Foreign Highway, 2020, 40(4): 124-130. [25] 陈雄, 张建东, 刘朵, 等. 预制拼装混凝土节段梁的弓形变形研究[J]. 中外公路, 2018, 38(2): 98-102. CHEN Xiong, ZHANG Jiandong, LIU Duo, et al. Study on bow deformation of precast assembled concrete segmented beam[J]. Journal of China & Foreign Highway, 2018, 38(2): 98-102.