Abstract
In order to solve the shortcomings of the manual method in the measurement accuracy of the pitting pit size and the measurement efficiency of the pitting pit location of the cable wire, the digital photos of the steel wire in the laboratory accelerated corrosion test were taken as the research object. Based on the digital image processing technology and the influence of the wire surface, an automatic measurement method for the location of the pitting pit shape parameters and the relative position between multiple pitting pits on the surface of the corroded wire was proposed. The results of automatic measurement and manual measurement were compared to analyze the engineering feasibility of the proposed method. The results show that compared with the manual measurement method, the automatic measurement method has the relative error of long axis length, spacing, and area of pitting pits within 10%, and the pitting pit recognition accuracy reaches 93.3%. The relative error of the long axis length decreases with the increase in the long axis length of the pitting pit. The automatic measurement method can save time up to 99.09% and greatly improve measurement efficiency. The automatic measurement method is superior to the manual measurement method in positioning accuracy and measurement efficiency and can meet the engineering needs of parameter measurement of pitting pits on corroded steel wire surfaces.
Publication Date
11-24-2023
DOI
10.14048/j.issn.1671-2579.2023.05.020
First Page
114
Last Page
121
Submission Date
March 2025
Recommended Citation
Hongsheng, XU; Lei, WANG; Donghuang, YAN; and Jiadong, WU
(2023)
"Automatic measurement method of cable wire corro sion pit shape based on digital image processing,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
5, Article 20.
DOI: 10.14048/j.issn.1671-2579.2023.05.020
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss5/20
Reference
[1] 许红胜, 吴佳东, 黄娟, 等. 基于蚀坑参数的既有斜拉索钢丝腐蚀程度分级评价研究[J]. 中外公路, 2015, 35(6): 148-151. XU Hongsheng, WU Jiadong, HUANG Juan, et al. Study on classification evaluation of corrosion degree of existing stay cable steel wire based on corrosion pit parameters[J]. Journal of China & Foreign Highway, 2015, 35(6): 148-151. [2] 黄娟.模拟酸雨环境下拉索钢丝腐蚀发展规律研究[D].长沙:长沙理工大学,2017. Huang Juan. Research on the Corrosion Development Law of Cable Steel Wires under Simulated Acid Rain Environment [D]. Changsha: Changsha University of Science and Technology, 2017 [3] 曾晟, 梁乃兴, 薛轲, 等. 基于扩展极大值变换沥青混合料数字图像预处理方法研究[J]. 中外公路, 2020, 40(2): 225-228. ZENG Sheng, LIANG Naixing, XUE (KeKei), et al. Research on digital image preprocessing method of asphalt mixture based on extended maximum transform[J]. Journal of China & Foreign Highway, 2020, 40(2): 225-228. [4] 王海朋, 张蓉, 张晓华, 等. 同步碎石集料粒径与沥青混合料配伍性研究[J]. 中外公路, 2019, 39(1): 218-221. WANG Haipeng, ZHANG Rong, ZHANG Xiaohua, et al. Study on compatibility of synchronous macadam aggregate particle size with asphalt mixture[J]. Journal of China & Foreign Highway, 2019, 39(1): 218-221. [5] 彭博, 罗楠欣, 蒋阳升, 等. 基于双层连通性检测的路面裂缝图像去噪算法[J]. 公路交通科技, 2015, 32(11): 7-13,26. Peng Bo, Luo Nanxin, Jiang Yangsheng, et al. A Denoising Algorithm for Pavement Cracking Images Based on Bi-layer Connectivity Checking [J]. Journal of Highway and Transportation Research and Development, 2015, 32(11): 7-13, 26 [6] 张娟, 沙爱民, 孙朝云, 等. 路面裂缝自动识别的图像增强技术[J]. 中外公路, 2009, 29(4): 301-305. ZHANG Juan, SHA Aimin, SUN (ChaoZhao)(Yun), et al. Image enhancement technology for automatic identification of pavement cracks[J]. Journal of China & Foreign Highway, 2009, 29(4): 301-305. [7] 许红胜, 蒋磊, 颜东煌. 中承式拱桥吊杆内部钢丝腐蚀病害实例研究[J]. 中外公路, 2023, 43(3): 83-87. XU Hongsheng, JIANG Lei, YAN Donghuang. Case study on corrosion disease of steel wire in suspender of half-through arch bridge[J]. Journal of China & Foreign Highway, 2023, 43(3): 83-87. [8] 许红胜, 任凯, 颜东煌. 腐蚀拉索钢丝的双蚀坑应力强度因子研究[J]. 中外公路, 2021, 41(5): 90-96. XU Hongsheng, REN Kai, YAN Donghuang. Study on stress intensity factor of double corrosion pit for corroded cable steel wire[J]. Journal of China & Foreign Highway, 2021, 41(5): 90-96. [9] 穆志韬, 王国才, 朱做涛. 基于图像处理技术的铝合金腐蚀分形特征[J]. 海军航空工程学院学报, 2011, 26(1): 33-35. MU Zhitao, WANG Guocai, ZHU Zuotao. Corrosion fractal character of aluminum alloy based on image processing technique[J]. Journal of Naval Aeronautical and Astronautical University, 2011, 26(1): 33-35. [10] 纪钢, 李红梅, 张伦武. 对镀层材料外观腐蚀特征的识别及分析处理[J]. 表面技术, 2001, 30(1): 21-24. JI Gang, LI Hongmei, ZHANG Lunwu. Disposition of material erode features with the technology of computer image recognition[J]. Surface Technology, 2001, 30(1): 21-24. [11] 朱做涛, 穆志韬, 苏维国, 等. 基于图像处理技术的铝合金腐蚀等级评定方法[J]. 南京航空航天大学学报, 2010, 42(3): 383-386. ZHU Zuotao, MU Zhitao, SU Weiguo, et al. Corrosion grade evaluation of aluminum alloy based on image processing technique[J]. Journal of Nanjing University of Aeronautics & Astronautics, 2010, 42(3): 383-386. [12] 陈景杰, 范新帅, 黄一. 共线双裂纹应力强度因子计算方法[J]. 华中科技大学学报(自然科学版), 2017, 45(4): 61-67. CHEN Jingjie, FAN Xinshuai, HUANG Yi. A pratical method of stress intensity factors for two collinear cracks[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2017, 45(4): 61-67. [13] 朱文, 周长泉, 李聪, 等. 大气腐蚀对白洋长江大桥钢结构影响研究[J]. 中外公路, 2021, 41(4): 101-105. ZHU Wen, ZHOU Changquan, LI Cong, et al. Study on the influence of atmospheric corrosion on the steel structure of Baiyang Yangtze River Bridge[J]. Journal of China & Foreign Highway, 2021, 41(4): 101-105. [14] 姚国文, 陈雪松, 钟力. 基于灰度图像的锈蚀拉索状况评定方法研究[J]. 重庆交通大学学报(自然科学版), 2016, 35(4): 10-12,74. YAO Guowen, CHEN Xuesong, ZHONG Li. Study on corroded cable evaluation based on gray image analysis[J]. Journal of Chongqing Jiaotong University (Natural Science), 2016, 35(4): 10-12,74. [15] 苏小妹, 许红胜, 颜东煌. 不中断交通情况下拱桥更换吊杆施工工序优化研究[J]. 中外公路, 2019, 39(3): 115-118. SU Xiaomei, XU Hongsheng, YAN Donghuang. Study on optimization of construction process of replacing suspenders of arch bridge without interruption of traffic[J]. Journal of China & Foreign Highway, 2019, 39(3): 115-118. [16] 杨浩, 卢文胜. 重载保通需求下拱桥吊杆更换关键技术[J]. 中外公路, 2022, 42(3): 122-127. YANG Hao, LU Wensheng. Key technology of arch bridge suspender replacement under heavy load and traffic guarantee demand[J]. Journal of China & Foreign Highway, 2022, 42(3): 122-127. [17] 任凯.拉索钢丝双蚀坑应力强度因子及其扩展寿命研究[D].长沙:长沙理工大学,2019. Ren Kai. Research on Stress Intensity Factor and Extended Life of Double Pitting in Cable Steel Wires [D]. Changsha: Changsha University of Science and Technology, 2019 [18] 孙鹏旭. 中承式拱桥吊杆更换施工技术研究[J]. 内蒙古公路与运输, 2020(5): 24-27. SUN Pengxu. Study on construction technology of suspender replacement of half-through arch bridge[J]. Highways & Transportation in Inner Mongolia, 2020(5): 24-27. [19] 姜可军.中、下承式拱桥吊杆病害分析及更换技术研究[D].郑州:华北水利水电大学,2021. Jiang Kejun. Analysis of Defects and Replacement Technology of Suspender Cables in Middle and Lower Bearing Arch Bridges [D]. Zhengzhou: North China University of Water Resources and Electric Power, 2021 [20] 许红胜, 胡亚斯, 颜东煌. 既有腐蚀拉索钢丝蚀坑形态参数的分布特征[J]. 中外公路, 2020, 40(1): 80-84. XU Hongsheng, HU Yasi, YAN Donghuang. Distribution characteristics of corrosion pit shape parameters of existing corroded cable steel wire[J]. Journal of China & Foreign Highway, 2020, 40(1): 80-84. [21] 杨丹, 赵海滨, 龙哲, 等. MATLAB图像处理实例详解[M]. 北京: 清华大学出版社, 2013. YANG Dan, ZHAO Haibin, LONG Zhe. Detailed explanation of MATLAB image processing example[M]. Beijing: Tsinghua University Press, 2013. [22] 张德丰. 详解MATLAB数字图像处理[M]. 北京: 电子工业出版社, 2010. ZHANG Defeng. Detailed explanation of MATLAB digital image processing[M]. Beijing: Publishing House of Electronics Industry, 2010. [23] 陈定海, 穆志韬, 苏维国, 等. 铝合金加速腐蚀形貌分形特征提取[J]. 机械强度, 2012, 34(2): 278-281. CHEN Dinghai, MU Zhitao, SU Weiguo, et al. Extracting fractal characteristics from corrosion morphology of aluminum alloys[J]. Journal of Mechanical Strength, 2012, 34(2): 278-281. [24] CHUI C K. An introduction to wavelets[M]. Boston: Academic Press, 1992 [25] 周静, 龙小宏. 基于图像处理的化学镀镍-磷合金镀层腐蚀形貌特征提取[J]. 电镀与环保, 2020, 40(2): 16-19. ZHOU Jing, LONG Xiaohong. Feature extraction of corrosion morphology of electroless Ni-P alloy coating based on image processing[J]. Electroplating & Pollution Control, 2020, 40(2): 16-19. [26] ZHU H L, KWOK J T. Improving de-noising by coefficient de-noising and dyadic wavelet transform[C]//2002 International Conference on Pattern Recognition. Quebec City, QC, Canada. IEEE, 2002: 273-276. [27] CLOUD E L. The geometric arithmetic parallel processor[C]//Proceedings., 2nd Symposium on the Frontiers of Massively Parallel Computation. Fairfax, VA, USA. IEEE, 1988: 373-381.