Abstract
In order to realize the accurate description and prediction of the temperature field and temperature effect of the bridge structure, the characteristics of the transverse temperature gradient of a flat steel box girder in a mountainous area were analyzed. Firstly, based on the long-term monitoring data of the temperature field of the flat steel box girder structure of a suspension bridge in a mountainous area, the transverse temperature difference extremum was analyzed, and the asymmetric distribution characteristics of the structural temperature field were obtained by using cluster analysis. Then, the probability density model of the transverse temperature difference between the top and bottom plates of the steel box girder was established by statistical analysis, and the standard value of the transverse temperature difference between the top and bottom plates of the steel box girder was calculated by taking 50 years as the re-occurrence period. Finally, the transverse temperature differences at different positions were combined according to the most unfavorable condition, and the transverse temperature gradient mode of the top and bottom plates was obtained. The results show that the transverse temperature difference of the steel box is less affected by seasonal variation. Affected by the mountain landform, the structural temperature field has obvious asymmetric distribution characteristics. The probability statistical model of the transverse temperature difference between the top and bottom plates of the steel box girder is in good agreement with the double Gaussian model. Since the top plate is directly radiated by the sun, its transverse temperature difference is significantly larger than that of the bottom plate. The maximum absolute values of the standard transverse temperature difference between the top and bottom plates of the steel box girder are 37.68 °C and 13.37 °C, respectively. The top plate of the flat steel box girder in a mountainous area has three kinds of transverse temperature gradient modes: M-shape, W-shape, and oblique N-shape. The bottom plate has three kinds of transverse temperature gradient modes: V-shape, inverted V-shape, and straight line. The transverse temperature gradient modes of the top and bottom plates have obvious asymmetry.
Publication Date
11-24-2023
DOI
10.14048/j.issn.1671-2579.2023.05.023
First Page
135
Last Page
140
Submission Date
March 2025
Recommended Citation
Wenfu, YANG and Xin, CHEN
(2023)
"Research on transverse temperature gradient of flat steel box‑girder in mountainous area based on long term monitoring,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
5, Article 23.
DOI: 10.14048/j.issn.1671-2579.2023.05.023
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss5/23
Reference
[1] 方金, 范亮. 高温混合料摊铺过程中的扁平钢箱梁温度效应分析[J]. 中外公路, 2021, 41(2): 214-219. FANG Jin, FAN Liang. Analysis on temperature effect of flat steel box girder during high temperature mixture paving[J]. Journal of China & Foreign Highway, 2021, 41(2): 214-219. [2] 陈想军. 等效加劲板单元在U形加劲板稳定性计算中的应用研究[J]. 中外公路, 2023, 43(2): 144-149. CHEN Xiangjun. Study on application of equivalent stiffening plate element in stability calculation of U-shaped stiffening plate[J]. Journal of China & Foreign Highway, 2023, 43(2): 144-149. [3] 赵晨晨. 大跨径连续钢箱梁桥高温摊铺下的结构受力研究[D].重庆:重庆交通大学,2022. ZHAO Chenchen. Research on Structural Load-bearing of Long-Span Continuous Steel Box Girder Bridges under High-Temperature Paving [D]. Chongqing: Chongqing Jiaotong University, 2022 [4] XIA Y, CHEN B, ZHOU X Q, et al. Field monitoring and numerical analysis of Tsing Ma Suspension Bridge temperature behavior[J]. Structural Control and Health Monitoring, 2013, 20(4): 560-575. [5] 李晓超. PC梁截面温度梯度对钢绞线预应力影响规律研究[J]. 中外公路, 2021, 41(2): 172-176. LI Xiaochao. Study on the influence of temperature gradient of PC beam section on prestress of steel strand [J]. Journal of China & Foreign Highway, 2021, 41(2): 172-176. [6] 姜竹昌, 高华睿, 曹洪亮, 等. 大跨径波形钢腹板箱梁桥截面竖向温度梯度研究[J]. 中外公路, 2021, 41(4): 125-130. JIANG Zhuchang, GAO Huarui, CAO Hongliang, et al. Study on vertical temperature gradient of long-span box girder bridge with corrugated steel webs [J]. Journal of China & Foreign Highway, 2021, 41(4): 125-130. [7] 蒋赣猷, 周群, 陈光辉. 大跨PC连续刚构桥主梁温度梯度下的应力分析[J]. 中外公路, 2019, 39(3): 143-147. JIANG Ganyou, ZHOU Qun, CHEN Guanghui. Stress analysis of long-span PC continuous rigid frame bridge under temperature gradient [J]. Journal of China & Foreign Highway, 2019, 39(3): 143-147. [8] MIRAMBELL E, AGUADO A. Temperature and stress distributions in concrete box girder bridges[J]. Journal of Structural Engineering, 1990, 116(9): 2388-2409. [9] 葛耀君,翟东,张国泉.混凝土斜拉桥温度场的试验研究[J].中国公路学报,1996,9(2):76‑83. GE Yaojun, ZHAI Dong, ZHANG Guoquan. Experimental Study on Temperature Field of Concrete Cable-Stayed Bridges [J]. China Journal of Highway and Transport, 1996, 9(2): 76-83 [10] 叶见曙, 贾琳, 钱培舒. 混凝土箱梁温度分布观测与研究[J]. 东南大学学报(自然科学版), 2002, 32(5): 788-793. YE Jianshu, JIA Lin, QIAN Peishu. Observation and research on temperature distribution in concrete box girders[J]. Journal of Southeast University (Natural Science Edition), 2002, 32(5): 788-793. [11] 雷笑, 叶见曙, 王毅. 日照作用下混凝土箱梁的温差代表值[J]. 东南大学学报(自然科学版), 2008, 38(6): 1105-1109. LEI Xiao, YE Jianshu, WANG Yi. Representative value of solar thermal difference effect on PC box-girder[J]. Journal of Southeast University (Natural Science Edition), 2008, 38(6): 1105-1109. [12] 汪剑, 方志. 混凝土箱梁桥的温度场分析[J]. 湖南大学学报(自然科学版), 2008, 35(4): 23-28. WANG Jian, FANG Zhi. Temperature variation of concrete box girder bridge[J]. Journal of Hunan University (Natural Sciences), 2008, 35(4): 23-28. [13] 曾庆响, 韩大建, 马海涛, 等. 预应力混凝土箱梁桥的温度效应分析[J]. 中南大学学报(自然科学版), 2010, 41(6): 2360-2366. ZENG Qingxiang, HAN Dajian, MA Haitao, et al. Analysis of temperature effects on prestressed concrete box girder bridges[J]. Journal of Central South University (Science and Technology), 2010, 41(6): 2360-2366. [14] LEE J H. Investigation of extreme environmental conditions and design thermal gradients during construction for prestressed concrete bridge girders[J]. Journal of Bridge Engineering, 2012, 17(3): 547-556. [15] 顾斌, 陈志坚, 陈欣迪. 基于气象参数的混凝土箱梁日照温度场仿真分析[J]. 东南大学学报(自然科学版), 2012, 42(5): 950-955. GU Bin, CHEN Zhijian, CHEN Xindi. Simulation analysis for solar temperature field of concrete box girder based on meteorological parameters[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(5): 950-955. [16] 顾斌, 陈志坚, 陈欣迪. 大尺寸混凝土箱梁日照温度场的实测与仿真分析[J]. 中南大学学报(自然科学版), 2013, 44(3): 1252-1261. GU Bin, CHEN Zhijian, CHEN Xindi. Measurement and simulation on solar temperature field of large size concrete box girder[J]. Journal of Central South University (Science and Technology), 2013, 44(3): 1252-1261. [17] 陶翀, 谢旭, 申永刚, 等. 基于概率分析的混凝土箱梁温度梯度模式[J]. 浙江大学学报(工学版), 2014, 48(8): 1353-1361. TAO Chong, XIE Xu, SHEN Yonggang, et al. Study on temperature gradient of concrete box girder based on probability analysis[J]. Journal of Zhejiang University (Engineering Science), 2014, 48(8): 1353-1361. [18] 刘江, 刘永健, 白永新, 等. 混凝土箱梁温度梯度模式的地域差异性及分区研究[J]. 中国公路学报, 2020, 33(3): 73-84. LIU Jiang, LIU Yongjian, BAI Yongxin, et al. Regional variation and zoning of temperature gradient pattern of concrete box girder[J]. China Journal of Highway and Transport, 2020, 33(3): 73-84. [19] 丁幼亮, 王晓晶, 王高新, 等. 珠江黄埔大桥钢箱梁温度长期监测与分析[J]. 东南大学学报(自然科学版), 2012, 42(5): 945-949. DING Youliang, WANG Xiaojing, WANG Gaoxin, et al. Long-term temperature monitoring and analysis of steel box girders of Pearl River Huangpu Bridge[J]. Journal of Southeast University (Natural Science Edition), 2012, 42(5): 945-949. [20] 丁幼亮,王高新,周广东,等.基于长期监测数据的润扬大桥扁平钢箱梁温度分布特性[J].中国公路学报,2013,26(2):94‑101. Ding Youliang, Wang Gaoxin, Zhou Guangdong, et al. Temperature Distribution on Flat Steel Box Girders of Runyang Bridges Based on Long-term Measurement Data [J]. China Journal of Highway and Transport, 2013, 26(2): 94-101.