•  
  •  
 

Abstract

In order to improve the durability of steel bridge deck pavement, this paper evaluated the mechanical response law of epoxy asphalt pavement with thicker steel bridge deck based on the static load test of solid steel bridge deck pavement and analyzed the transverse strain distribution, critical load, overload effect, axial and transverse strain difference, and the strain condition of epoxy asphalt pavement structure. It identified the mechanical behavior law of epoxy asphalt pavement. The results show that the bridge deck structure is basically in an elastic state under axle load; the surface strain of the bridge deck increases obviously with the increase in axle load, and the effect of wheel load on the steel bridge deck exists within the radius of 1 m. The upper edge of the axial stiffener web of the bridge deck is in the most unfavorable tension state, and fatigue cracking is easy to occur under the repeated action of wheel load. The transverse strain on the lower surface of the steel bridge deck is obviously higher than the axial strain. Epoxy asphalt pavement is mainly characterized by elastic characteristics.

Publication Date

11-24-2023

DOI

10.14048/j.issn.1671-2579.2023.05.026

First Page

156

Last Page

162

Submission Date

March 2025

Reference

[1] 《中国公路学报》编辑部. 中国桥梁工程学术研究综述·2014[J]. 中国公路学报, 2014, 27(5): 1-96. Editorial Department of China Journal of Highway and Transport.Review on China” s bridge engineering research: 2014[J]. China Journal of Highway and Transport, 2014, 27(5): 1-96. [2] 曾国东. 钢桥面铺装力学行为与疲劳性能影响因素评价研究[D]. 广州: 华南理工大学, 2019. ZENG Guodong. Study on evaluation of influencing factors of mechanical behavior and fatigue performance of steel bridge deck pavement[D]. Guangzhou: South China University of Technology, 2019. [3] 孟凡超, 苏权科, 徐伟, 等. 长寿命钢桥面铺装关键技术[M]. 北京: 人民交通出版社, 2018. MENG Fanchao, SU Quanke, XU Wei, et al. Key technology for the long life pavement on steel bridge deck[M]. Beijing: China Communications Press, 2018. [4] ZHONG K, YANG X, WEI X H. Investigation on surface characteristics of epoxy asphalt concrete pavement[J]. International Journal of Pavement Research and Technology, 2017, 10(6): 545-552. [5] XUE Y C, QIAN Z D. Development and performance evaluation of epoxy asphalt concrete modified with mineral fiber[J]. Construction and Building Materials, 2016, 102: 378-383. [6] 黄红明. 热拌环氧沥青钢桥面铺装材料评价与应用研究[D]. 广州: 华南理工大学, 2013. HUANG Hongming. Evaluation and application of hot-mixed epoxy asphalt steel bridge deck pavement materials[D]. Guangzhou: South China University of Technology, 2013. [7] 王占飞, 程浩波, 程志彬, 等. 桥面铺装对正交异性钢桥面板疲劳性能的影响[J]. 沈阳建筑大学学报(自然科学版), 2018, 34(2): 257-266. WANG Zhanfei, CHENG Haobo, CHENG Zhibin, et al. Influence of pavement on fatigue performance of orthotropic steel deck[J]. Journal of Shenyang Jianzhu University (Natural Science), 2018, 34(2): 257-266. [8] 许颖. 钢桥面铺装使用情况调查及病害分析[D]. 重庆: 重庆交通大学, 2014. XU Ying. Investigation and disease analysis of steel bridge deck pavement[D]. Chongqing: Chongqing Jiaotong University, 2014. [9] 孙光辉, 王志祥, 杨耀. 多场耦合作用下钢桥面环氧沥青铺装病理分析[J]. 公路交通科技(应用技术版), 2017, 13(9): 73-76. SUN Guanghui, WANG Zhixiang, YANG Yao. Pathological analysis of epoxy asphalt pavement on steel bridge deck under multi-field coupling[J]. Journal of Highway and Transportation Research and Development, 2017, 13(9): 73-76. [10] 徐勋倩, 杨威, 黄卫, 等. 循环荷载作用下钢桥面铺装疲劳损伤失效行为研究[J]. 振动与冲击, 2020, 39(7): 59-66. XU Xunqian, YANG Wei, HUANG Wei, et al. Fatigue damage failure behavior of steel bridge pavement under cyclic loading[J]. Journal of Vibration and Shock, 2020, 39(7): 59-66. [11] 徐日辉, 曾国东, 黄红朗. 平胜大桥大宽度环氧沥青铺装整幅维修方案研究[J]. 中外公路, 2020, 40(6): 62-66. XU Rihui, ZENG Guodong, HUANG Honglang. Study on maintenance scheme of large width epoxy asphalt pavement of Pingsheng Bridge[J]. Journal of China & Foreign Highway, 2020, 40(6): 62-66.

Share

COinS