•  
  •  
 

Abstract

In order to alleviate the shortage of petroleum asphalt and explore the applicability of microalgae oil in the field of modified asphalt, the composition of microalgae oil, as well as the conventional properties and rheological properties of modified asphalt at high and low temperatures were studied by four-component analysis, three index tests, high temperature shear rheology tests, and low temperature bending creep tests. The performance of microalgae oil-modified asphalt mixture was studied by Marshall test, high temperature rutting, and low temperature bending test. The results show that the microalgae oil is similar to the gel asphalt structure with more hard components. With the increase in microalgae oil content, the softening point of modified asphalt gradually increases, and the ductility and penetration degree gradually decrease. When the content of microalgal oil is 30%, the softening point of modified asphalt is above 60 °C; the high temperature performance is PG 70 before and after aging, and the dynamic stability of the mixture is above 5 000 times/mm; the bending strain at low temperature is higher than 2 500 με, indicating great comprehensive performance. In order to ensure good high and low temperature performance, the content of microalgae oil in microalgae oil-modified asphalt should be 20%–30%.

Publication Date

11-24-2023

DOI

10.14048/j.issn.1671-2579.2023.05.035

First Page

208

Last Page

213

Submission Date

March 2025

Reference

[1] 冯学茂, 白献萍, 韦慧, 等. 不同老化模式下有机化蒙脱土生物改性沥青性能[J]. 中外公路, 2022, 42(5): 198-202. FENG Xuemao, BAI Xianping, WEI Hui, et al. Study on properties of organic montmorillonite modified bio-asphalt under different aging modes[J]. Journal of China & Foreign Highway, 2022, 42(5): 198-202. [2] 周超. 橡胶粉改性生物沥青的老化特性研究[J]. 中外公路, 2022, 42(4): 237-243. ZHOU Chao. Study on aging characteristics of bio-asphalt modified by rubber powder[J]. Journal of China & Foreign Highway, 2022, 42(4): 237-243. [3] YANG X, MILLS-BEALE J, YOU Z P. Chemical characterization and oxidative aging of bio-asphalt and its compatibility with petroleum asphalt[J]. Journal of Cleaner Production, 2017, 142: 1837-1847. [4] GONG M H, YANG J, ZHANG J Y, et al. Physical–chemical properties of aged asphalt rejuvenated by bio-oil derived from biodiesel residue[J]. Construction and Building Materials, 2016, 105: 35-45. [5] 汪海年, 高俊锋, 赵欣, 等. 基于 DSR 和 RV 的生物沥青结合料流变特性研究[J]. 湖南大学学报(自然科学版), 2015, 42(6): 26-33. WANG Hainian, GAO Junfeng, ZHAO Xin, et al. Rheological properties on bio-binder based on DSR and RV[J]. Journal of Hunan University (Natural Sciences), 2015, 42(6): 26-33. [6] 王飞, 李晓娟, Haifang Wen, 等. 基于废食用油的生物结合料共混沥青及其混合料性能研究[J]. 中外公路, 2015, 35(6): 264-268. WANG Fei ,LI Xiaojuan, HAIFANG Wen, et al. Laboratory evaluation of waste cooking oil-based bioasphalt as an alternative binder for hot mix asphalt[J]. Journal of China & Foreign Highway, 2015, 35(6): 264-268. [7] 包建业, 王静. 生物改性橡胶沥青流变性能研究[J]. 中外公路, 2018, 38(6): 250-253. BAO Jianye, WANG Jing. Study on rheological properties of bio-modified rubber asphalt[J]. Journal of China & Foreign Highway, 2018, 38(6): 250-253. [8] 邓林飞, 朱俊材, 聂思宇, 等. 桉木基生物油改性沥青结合料的力学性能研究[J]. 公路, 2019, 64(1): 202-206. DENG Linfei, ZHU Juncai, NIE Siyu, et al. Mechanical properties of eucalyptus bio-oil modified asphalt binder[J]. Highway, 2019, 64(1): 202-206. [9] 赵晓翠, 臧广远, 弓家胜, 等. 高性能生物改性沥青的制备与路用性能研究[J]. 山东理工大学学报(自然科学版), 2020, 34(1): 28-32. ZHAO Xiaocui, ZANG Guangyuan, GONG Jiasheng, et al. Study on preparation and pavement properties of high performance modified bio-asphalt binder[J]. Journal of Shandong University of Technology (Natural Science Edition), 2020, 34(1): 28-32. [10] 高俊锋, 汪海年, 尤占平, 等. SBS改性生物沥青结合料高温流变特性[J]. 沈阳建筑大学学报(自然科学版), 2018, 34(2): 293-302. GAO Junfeng, WANG Hainian, YOU Zhanping, et al. High temperature rheological properties on SBS modified bio-binder[J]. Journal of Shenyang Jianzhu University (Natural Science), 2018, 34(2): 293-302. [11] 季坤, 荀建伟. 生物沥青与TLA复合改性沥青及混合料性能研究[J]. 新型建筑材料, 2020, 47(12): 168-172. JI Kun, XUN Jianwei. Study on performance of bio-asphalt and TLA composite modified asphalt and mixture[J]. New Building Materials, 2020, 47(12): 168-172. [12] CHAILLEUX E, AUDO M, BUJOLI B, et al. Alternative binder from microalgae: algoroute project[C]//Workshop Alternative Binders for Sustainable Asphalt Pavements. France, 2012. [13] 唐喆, 芮蕾, 张颖, 等. 利用微藻制取生物燃料的研究进展[J]. 现代化工, 2009, 29(7): 12-17,19. TANG Zhe, RUI Lei, ZHANG Ying, et al. Advances in production of bio-fuels from microalgae[J]. Modern Chemical Industry, 2009, 29(7): 12-17,19. [14] 赵宝俊, 赵士峰, 张洪亮, 等. 纳米CaCO3/SBR复合改性沥青的性能与机理[J]. 长安大学学报(自然科学版), 2017, 37(5): 15-22. ZHAO Baojun, ZHAO Shifeng, ZHANG Hongliang, et al. Properties and mechanism of composite asphalt modified by nano-CaCOa/SBR[J]. Journal of Chang’an University (Natural Science Edition), 2017, 37(5): 15-22. [15] 方滢, 谢玮珺, 杨建华. 聚氨酯预聚物改性沥青的制备及其流变行为[J]. 功能材料, 2019, 50(6): 197-205. FANG Ying, XIE Weijun, YANG Jianhua. Preparation and rheological behavior of polyurethane pre-polymer modified asphalt[J]. Journal of Functional Materials, 2019, 50(6): 197-205.

Share

COinS