Abstract
In order to study the influence of humidity on the performance of asphalt mixture, vacuum drying oven and constant temperature and humidity box were used to carry out humidity curing on AC-20C asphalt mixture specimen. A uniaxial penetration test, triaxial test, low temperature bending test, and uniaxial compression dynamic modulus test were carried out to obtain the high and low temperature performance of the selected asphalt mixture and the dynamic modulus and phase angle under different temperatures and frequencies. The main curve of the dynamic modulus was drawn. Through the analysis of the test results, the following conclusions are obtained: Humidity has a great influence on the high temperature performance of asphalt mixture. With the increase in humidity, the cohesiveness of the asphalt mixture decreases, and its high temperature stability mainly depends on the interlocking action of aggregate. The conversion of gaseous water to a solid state in the asphalt mixture due to the decrease in temperature will destroy the asphalt–aggregate interface characteristics of the asphalt mixture, resulting in a rapid decline in the low temperature performance of the asphalt mixture. Humidity also has a great influence on the viscoelastic properties of asphalt mixture at room temperature. Specifically, with the increase in humidity, the phase angle is more sensitive to temperature change, and the main curve of dynamic modulus of asphalt mixture gradually decreases in the low frequency range, which damages the ability of the asphalt mixture to resist permanent deformation in this region.
Publication Date
11-24-2023
DOI
10.14048/j.issn.1671-2579.2023.05.041
First Page
242
Last Page
247
Submission Date
March 2025
Recommended Citation
Hongwei, MAO and Zhonghua, CHEN
(2023)
"Influence of humidity on performance of asphalt mixture,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
5, Article 41.
DOI: 10.14048/j.issn.1671-2579.2023.05.041
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss5/41
Reference
[1] 龚先祁.矿料与沥青粘附性对混合料水损害的影响机理研究[D].重庆:重庆交通大学,2017. GONG Xianqi. Research on the mechanism of water damage to mixtures influenced by the adhesion between aggregates and asphalt [D]. Chongqing: Chongqing Jiaotong University, 2017 [2] 杨美荣.沥青路面水损害原因及其防治措施研究[D].西安:西安建筑科技大学,2006. YANG Meirong. Research on causes and prevention measures of water damage to asphalt pavements [D]. Xi'an: Xi'an University of Architecture and Technology, 2006 [3] 何中楠.长期浸水对沥青和集料‒沥青界面性能损伤的试验研究[J].中外公路,2012,32(2):261‑263. HE Zhongnan. Experimental study on the damage of asphalt and aggregate-asphalt interface performance under long-term immersion [J] Journal of China & Foreign Highway, 2012,32(2):261‑263. [4] 曾俊, 肖高霞, 罗志刚. 沥青混合料水稳定性试验评价方法综述[J]. 公路交通技术, 2011, 27(1): 40-46. ZENG Jun, XIAO Gaoxia, LUO Zhigang. Overview of evaluation methods for test of water stability of asphalt mixtures[J]. Technology of Highway and Transport, 2011, 27(1): 40-46. [5] 陈少全.甘肃高速公路沥青路面水损害及防治措施研究[D].西安:长安大学,2011. CHEN Shaoquan. Research on water damage and prevention measures of asphalt pavements on gansu expressways [D]. Chang'an University, 2011. [6] 牛思学. 甘肃省沥青路面水损坏调查分析[J]. 甘肃科技, 2010, 26(21): 132-134. NIU Sixue. The analysis of water damage of asphalt pavement in Gansu Province[J]. Gansu Science and Technology, 2010, 26(21): 132-134. [7] SASAKI I, MORIYOSHI A, HACHIYA Y. Water/gas permeability of bituminous mixtures and involvement in blistering phenomenon[J]. Journal of the Japan Petroleum Institute, 2006, 49(2): 57-64. [8] 黄婷婷.沥青混合料内部积聚型水气运动机理研究[D].武汉:武汉理工大学,2018. HUANG Tingting. Research on the mechanism of accumulative water vapor movement in asphalt mixture [D]. Wuhan: Wuhan University of Technology, 2018. [9] 刚颖.温湿度影响下沥青混凝土水汽扩散特征分析[D].邯郸:河北工程大学,2018. GANG Ying. Analysis of water vapor diffusion characteristics of asphalt concrete under temperature and humidity influence [D]. Handan: Hebei University of Engineering, 2018 [10] 罗晶, 罗蓉, 涂崇志. 相对湿度对沥青与集料黏附性的影响[J]. 武汉理工大学学报(交通科学与工程版), 2021, 45(4): 757-762. LUO Jing, LUO Rong, TU Chongzhi. Effect of relative humidity on the adhesion between asphalt and aggregate[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2021, 45(4): 757-762. [11] 罗蓉, 侯强, 刘涵奇. 湿度对沥青混合料黏弹性质的影响[J]. 重庆交通大学学报(自然科学版), 2020, 39(8): 77-83. LUO Rong, HOU Qiang, LIU Hanqi. Effect of humidity on viscoelastic properties of asphalt mixture[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(8): 77-83. [12] 交通运输部公路科学研究院. 公路工程沥青及沥青混合料试验规程: JTG E20—2011[S]. 北京: 人民交通出版社, 2011. Research Institute of Highway Ministry of Transport.Standard test methods of bitumen and bituminous mixtures for highway engineering: JTG E20—2011[S]. Beijing: China Communications Press, 2011. [13] 毕玉峰, 孙立军. 沥青混合料抗剪试验方法研究[J]. 同济大学学报(自然科学版), 2005, 33(8): 1036-1040. BI Yufeng, SUN Lijun. Research on test method of asphalt mixture’s shearing properties[J]. Journal of Tongji University (Natural Science), 2005, 33(8): 1036-1040. [14] 许严, 孙立军, 刘黎萍. 基于单轴贯入重复剪切试验的沥青混合料永久变形[J]. 同济大学学报(自然科学版), 2013, 41(8): 1203-1207. XU Yan, SUN Lijun, LIU Liping. Research on asphalt mixture permanent deformation by single penetration repeated shear test[J]. Journal of Tongji University (Natural Science), 2013, 41(8): 1203-1207. [15] WANG H, AL-QADI I L. Near-surface pavement failure under multiaxial stress state in thick asphalt pavement[J]. Transportation Research Record: Journal of the Transportation Research Board, 2010, 2154(1): 91-99. [16] ZHU S Y, FU Q, CAI C B, et al. Damage evolution and dynamic response of cement asphalt mortar layer of slab track under vehicle dynamic load[J]. Science China Technological Sciences, 2014, 57(10): 1883-1894. [17] PELLINEN T, XIAO S. Relationship between triaxial shear strength and indirect tensile strength of hot mix asphalt[J].Journal of the Association of Asphalt Paving Technologists, 2005, 74:347‑379. [18] 陈静云, 孙依人, 张岩, 等. 沥青混合料动态粘弹性行为分析的模拟方法[J]. 中国公路学报, 2014, 27(8): 11-16. CHEN Jingyun, SUN Yiren, ZHANG Yan, et al. Modeling method for analysis of dynamic viscoelastic behavior of asphalt mixture[J]. China Journal of Highway and Transport, 2014, 27(8): 11-16. [19] ROULEAU L, DEÜ J F, LEGAY A, et al. Application of Kramers–Kronig relations to time–temperature superposition for viscoelastic materials[J]. Mechanics of Materials, 2013, 65: 66-75. [20] 马翔, 倪富健, 陈荣生. 沥青混合料动态模量试验及模型预估[J]. 中国公路学报, 2008, 21(3): 35-39,52. MA Xiang, NI Fujian, CHEN Rongsheng. Dynamic modulus test of asphalt mixture and prediction model[J]. China Journal of Highway and Transport, 2008, 21(3): 35-39,52.