Abstract
In order to study the confining stress dependence of dynamic mechanical properties of asphalt mixtures, triaxial dynamic modulus tests were carried out on AC-20 (AH‑30#) and AC-25 (AH‑30#) asphalt mixtures at different test temperatures, different scanning frequencies, and different confining pressure levels. Firstly, the effects of confining stress on the dynamic mechanical properties of asphalt mixtures at different temperatures and frequencies were analyzed. Secondly, based on the time–temperature equivalent principle, Boltzmann and Gussamp function models were used to draw the principal curves of dynamic modulus and phase angle of asphalt mixtures with a reference frequency of 10 Hz, respectively. The results show that the confining pressure has little effect on the dynamic mechanical properties of the two asphalt mixtures at different scanning frequencies when the test temperature is lower than 20 °C. When the temperature is 55 °C, and the scanning frequency is 0.1 Hz, the maximum dynamic modulus ratio of AC-20 (AH‑30#) and AC-25 (AH‑30#) asphalt mixtures is 3.50 and 2.49, respectively. When the test temperature is 50 °C, and the scanning frequency is 0.1 Hz, the minimum phase angle ratio is 0.59 and 0.65, respectively. At high temperatures, a larger confining pressure level means a larger dynamic modulus ratio and a smaller phase angle ratio. The dynamic mechanical properties of the two asphalt mixtures have a significant confining stress dependence. The dynamic modulus of asphalt mixtures and the principal curve as a whole have the same change trend, but in the high temperature region, the confining pressure level increases; the dynamic modulus increases, and the phase angle decreases. The confining pressure stress plays a hardening effect on the asphalt mixture, and there are significant differences in the principal curve. In this case, the asphalt mixture should be regarded as a nonlinear viscoelastic material. It is suggested to introduce confining pressure into the dynamic modulus test of asphalt mixtures and explore a new triaxial dynamic modulus test method to replace the existing uniaxial compression dynamic modulus test for asphalt mixtures.
Publication Date
11-24-2023
DOI
10.14048/j.issn.1671-2579.2023.05.042
First Page
248
Last Page
253
Submission Date
March 2025
Recommended Citation
Zhongzhou, SHI; Huafeng, LUAN; and Hongyun, DONG
(2023)
"Study on dependence of dynamic mechanical properties of asphalt mixture on surrounding compressive,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
5, Article 42.
DOI: 10.14048/j.issn.1671-2579.2023.05.042
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss5/42
Reference
[1] 张肖宁. 沥青与沥青混合料的粘弹力学原理及应用[M]. 北京: 人民交通出版社, 2006. ZHANG Xiaoning. Viscoelastic principle and application of asphalt and asphalt mixture[M]. Beijing: China Communications Press, 2006. [2] 王维平. 沥青混合料动态模量及其变化规律研究[J]. 中外公路, 2017, 37(5): 285-288. WANG Weiping. Study on dynamic modulus of asphalt mixture and its changing law[J]. Journal of China & Foreign Highway, 2017, 37(5): 285-288. [3] 中交路桥技术有限公司. 公路沥青路面设计规范: JTG D50—2017[S]. 北京: 人民交通出版社, 2017. Zhongjiao Road & Bridge Technology Co., Ltd .Specifications for Design of Highway Asphalt Pavement: JTG D50—2017[S]. Beijing: China Communications Press, 2017. [4] 刘朝晖, 黄优, 王旭东, 等. 应变水平对沥青混合料动态模量及黏弹性的影响分析[J]. 中外公路, 2017, 37(1): 188-192. LIU (ChaoZhao)(Hui), HUANG You, WANG Xudong, et al. Influence of strain level on dynamic modulus and viscoelasticity of asphalt mixture[J]. Journal of China & Foreign Highway, 2017, 37(1): 188-192. [5] 周维锋. 不同受力模式下沥青混合料动态模量 应变依赖特性研究[J]. 重庆交通大学学报(自然科学版), 2019, 38(9): 57-62. ZHOU Weifeng. Strain-dependent model for complex modulus of asphalt mixture[J]. Journal of Chongqing Jiaotong University (Natural Science), 2019, 38(9): 57-62. [6] 周兴业, 蒋勇, 王旭东, 等. 基于温度与应变参数的沥青混合料动态模量依赖模型研究[J]. 公路交通科技, 2019, 36(3): 7-13. ZHOU Xingye, JIANG Yong, WANG Xudong, et al. Study on dynamic modulus dependence model of asphalt mixtures based on temperature and strain parameters[J]. Journal of Highway and Transportation Research and Development, 2019, 36(3): 7-13. [7] 周兴业.基于足尺环道试验的沥青路面结构响应及其非线性分析[D].哈尔滨:哈尔滨工业大学,2019. ZHOU Xingye. Structural response and nonlinear analysis of asphalt pavement based on full-scale ring road test [D]. Harbin: Harbin Institute of Technology, 2019. [8] 尤远见. 沥青混合料动态模量的研究[D]. 济南: 山东建筑大学, 2017. YOU Yuanjian. Study on dynamic modulus of asphalt mixture[D]. Jinan: Shandong Jianzhu University, 2017. [9] 赵延庆, 叶勤, 文健. 围压对沥青混合料动态模量的影响[J]. 重庆交通大学学报(自然科学版), 2007, 26(6): 96-99. ZHAO Yanqing, YE Qin, WEN Jian. Effects of confining pressure on dynamic modulus[J]. Journal of Chongqing Jiaotong University (Natural Science), 2007, 26(6): 96-99. [10] 赵延庆, 吴剑, 文健. 沥青混合料动态模量及其主曲线的确定与分析[J]. 公路, 2006, 51(8): 163-167. ZHAO Yanqing, WU Jian, WEN Jian. Determination and analysis of dynamic modulus of asphalt mixture and its master curve[J]. Highway, 2006, 51(8): 163-167. [11] 交通运输部公路科学研究所. 公路工程沥青及沥青混合料试验规程: JTG E20—2011[S]. 北京: 人民交通出版社, 2011. Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering: JTG E20—2011[S]. Beijing: China Communications Press, 2011. [12] 张倩, 范哲哲, 张尚龙, 等. 沥青混合料相位角预估模型[J]. 长安大学学报(自然科学版), 2018, 38(2): 19-25. ZHANG Qian, FAN Zhezhe, ZHANG Shanglong, et al. Prediction model of phase angle of asphalt mixture[J]. Journal of Chang’an University (Natural Science Edition), 2018, 38(2): 19-25. [13] 肖庆一, 余天航, 陈向阳, 等. 铁尾矿沥青混合料动态模量试验研究[J]. 重庆交通大学学报(自然科学版), 2020, 39(5): 85-90,102. XIAO Qingyi, YU Tianhang, CHEN Xiangyang, et al. Experimental study on dynamic modulus of iron tailings asphalt mixture[J]. Journal of Chongqing Jiaotong University (Natural Science), 2020, 39(5): 85-90,102. [14] 张晨晨, 钱振东, 王旭东, 等. 基于DMA方法的沥青砂浆动态弯拉黏弹特性[J]. 公路交通科技, 2019, 36(3): 22-28. ZHANG Chenchen, QIAN Zhendong, WANG Xudong, et al. Dynamic flexural-tensile viscoelastic property of asphalt mortar based on DMA method[J]. Journal of Highway and Transportation Research and Development, 2019, 36(3): 22-28.