Abstract
To facilitate decision-makers to grasp the technical level and environmental influence of different in-situ thermal recycling units during construction, this paper proposed an evaluation method for in-situ thermal recycling and clean construction of asphalt pavement based on the game theory combination weighting and matter-element extension model. Firstly, based on the construction technology level and environment, a comprehensive analysis of in-situ thermal recycling construction was conducted, with the clean construction concept proposed. Meanwhile, the literature query and field research were adopted to construct an evaluation index system for clean construction. Secondly, to ensure the scientific rationality of the evaluation process, this paper introduced game theory into the hierarchy entropy to comprehensively determine the weight, and adopted an improved matter-element extension model to calculate the cleanliness level of different in-situ thermal recycling construction technologies. Finally, a comprehensive analysis was conducted and relevant suggestions were provided. By taking the preventive maintenance project of asphalt pavement in Chaohu City (in-situ thermal recycling technology) as an example, the cleanliness level of multiple schemes was evaluated and compared. The results show that the cleanliness level of the hot air circulation heating technology construction scheme was level I, which both ensures construction quality and conforms to the green development concept.
Publication Date
1-18-2024
DOI
10.14048/j.issn.1671-2579.2023.06.010
First Page
60
Last Page
67
Submission Date
March 2025
Recommended Citation
Xiaohong, GUO; Li, Deng; and Mingxu, Zhou
(2024)
"Clean construction assessment of in⁃situ thermal recycling of asphalt pavement,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
6, Article 10.
DOI: 10.14048/j.issn.1671-2579.2023.06.010
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss6/10
Reference
[1] 交通运输部.2022年交通运输行业发展统计公报[EB/OL].(2023‑06‑21)[2023‑06‑30] https://www.gov.cn/lianbo/bumen /202306/content_6887539.htm. Ministry of Transport.2022 Statistical Bulletin on Transport Sector Development [EB/OL]. (2023-06-21)[2023-06-30] https://www.gov.cn/lianbo/bumen /202306/content_6887539.htm . [2] 徐剑, 黄颂昌, 邹桂莲. 高等级公路沥青路面再生技术[M]. 北京: 人民交通出版社, 2011. XU Jian, HUANG Songchang, ZOU Guilian. Asphalt pavement recycling technology of high-grade highway [M]. Beijing: China Communications Press, 2011. [3] 石敏俊. 生态文明建设和绿色发展的路线图[J]. 公关世界, 2018(11): 68-69. SHI Minjun. The road map of ecological civilization construction and green development [J]. PR World, 2018(11): 68-69. [4] ALI H, MCCARTHY L M, WELKER A. Performance of hot in-place recycled Superpave mixtures in Florida[J]. Construction and Building Materials, 2013, 49: 618-626. [5] 李雪连, 崔之靖, 吕新潮, 等. 就地热再生沥青混合料均匀性的细观评价指标[J]. 中国公路学报, 2020, 33(10): 254-264. LI Xuelian, CUI Zhijing, (LÜ/LV/LU/LYU) Xinchao, et al. Mesoscale evaluation index for the homogeneity of hot in-place recycling asphalt mixture[J]. China Journal of Highway and Transport, 2020, 33(10): 254-264. [6] FLORES G, GALLEGO J, GIULIANI F, et al. Aging of asphalt binder in hot pavement rehabilitation[J]. Construction and Building Materials, 2018, 187: 214-219. [7] HAN D D, ZHAO Y L, PAN Y Y, et al. Heating process monitoring and evaluation of hot in-place recycling of asphalt pavement using infrared thermal imaging[J]. Automation in Construction, 2020, 111: 103055. [8] 李雪毅, 邹晓翎, 吁新华. 热风循环式就地热再生沥青路面温度场[J]. 中外公路, 2018, 38(2): 69-74. LI Xueyi, ZOU Xiaoling, (XU/YU) Xinhua. Temperature field of hot air circulation hot in-place recycling asphalt pavement [J]. Journal of China & Foreign Highway, 2018, 38(2): 69-74. [9] 吴思.山区国省干线公路沥青路面就地热再生绿色评价研究[D].重庆:重庆交通大学,2014. WU Si. Green evaluation of in-place hot recycling of asphalt pavement on mountainous national and provincial trunk roads [D]. Chongqing: Chongqing Jiaotong University, 2014 [10] 李邦武, 杨梦柔, 王晓路, 等. 海南省绿色公路施工阶段评价指标体系研究[J]. 公路, 2020, 65(2): 265-272. LI Bangwu, YANG Mengrou, WANG Xiaolu, et al. Study of evaluation indices system for green highway construction in Hainan Province[J]. Highway, 2020, 65(2): 265-272. [11] 屠书荣, 秦绍清, 王晓辉, 等. 基于过程控制的绿色公路评价方法和标准研究[J]. 中外公路, 2020, 40(6): 327-331. TU Shurong, QIN Shaoqing, WANG Xiaohui, et al. Research on evaluation method and standard of green highway based on process control [J]. Journal of China & Foreign Highway, 2020, 40(6): 327-331. [12] 陈学平, 白思华, 姚嘉林, 等. 绿色公路评价指标体系及评价方法[J]. 交通运输研究, 2020, 6(4): 9-17. CHEN Xueping, BAI Sihua, YAO Jialin, et al. Green highway evaluation index system and evaluation method[J]. Transport Research, 2020, 6(4): 9-17. [13] 山西省市场监督管理局. 公路工程绿色施工评价标准: DB14/T 1724—2018[S].山西:山西省市场监督管理局,2018. Shanxi Provincial Market Supervision and Administration Bureau. Green Construction Evaluation Standard for Highway Engineering: DB14/T 1724—2018 [S]. Shanxi: Shanxi Provincial Market Supervision and Administration Bureau, 2018. [14] 北京市住房和城乡建设科技促进中心,北京建筑技术发展有限责任公司,中国建筑科学研究院有限公司,等, 北京市住房和城乡建设委员会. 绿色建筑评价标准: DB11/T 825—2021[S]. 北京:北京市市场监督管理局,2021. Beijing Municipal Commission of Urban and Rural Construction, Beijing Building Technology Development Co., Ltd., China Academy of Building Research Co., Ltd., et al. Assessment Standard for Green Building: DB11/T 825—2021 [S]. Beijing: Beijing Municipal Market Supervision and Administration Bureau, 2021. [15] 李强年, 鲍俊超, 牛昌林. 基于ANP-Fuzzy法的装配式绿色建筑评价[J]. 建筑节能, 2020, 48(10): 67-71,101. LI Qiangnian, BAO Junchao, NIU Changlin. Evaluation of prefabricated green building based on ANP and fuzzy method[J]. Building Energy Efficiency, 2020, 48(10): 67-71,101. [16] 李刚, 程砚秋, 董霖哲, 等. 基尼系数客观赋权方法研究[J]. 管理评论, 2014, 26(1): 12-22. LI Gang, CHENG Yanqiu, DONG Linzhe, et al. Study of the gini coefficient objective weights[J]. Management Review, 2014, 26(1): 12-22. [17] 李辉山, 杨丽. 基于熵权法的被动式超低能耗建筑评价[J]. 建筑节能(中英文), 2021, 49(1): 47-51. LI Huishan, YANG Li. Passive ultra-low energy consumption building evaluation based on entropy weight method[J]. Building Energy Efficiency, 2021, 49(1): 47-51. [18] 贡力, 路瑞琴, 靳春玲, 等. 基于博弈-改进可拓理论的寒冷地区长距离明渠冬季运行安全评价[J]. 自然灾害学报, 2019, 28(6): 81-92. GONG Li, LU Ruiqin, JIN Chunling, et al. Winter operation safety evaluation of long distance water diversion channels in cold areas based on game-improved extension theory[J]. Journal of Natural Disasters, 2019, 28(6): 81-92. [19] 王艳红, 张倩, 薛向东. 河北省大学生创业环境评价: 基于博弈物元可拓模型的分析[J]. 河北经贸大学学报(综合版), 2020, 20(4): 60-65. WANG Yanhong, ZHANG Qian, XUE Xiangdong. Evaluation on college students entrepreneurship environment in Hebei Province[J]. Journal of Hebei University of Economics and Business (Comprehensive Edition), 2020, 20(4): 60-65. [20] 李世辉, 葛玉峰, 王如玉. 基于改进变权物元可拓模型的碳信息披露质量评价[J]. 统计与决策, 2019, 35(21): 57-61. LI Shihui, GE Yufeng, WANG Ruyu. Quality evaluation of carbon information disclosure based on improved variable weight matter-element extension model [J]. Statistics & Decision, 2019, 35(21): 57-61. [21] 孙廷容, 黄强, 张洪波, 等. 基于粗集权重的改进可拓评价方法在灌区干旱评价中的应用[J]. 农业工程学报, 2006, 22(4): 70-74. SUN Tingrong, HUANG Qiang, ZHANG Hongbo, et al. Improved extension assessment method based on Rough sets applied to drought evaluation of irrigated areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2006, 22(4): 70-74. [22] 刘洋, 刘晓云, 李玉飞. 基于改进物元可拓模型的高校突发事件应急管理能力评价[J]. 中国管理科学, 2022, 30(11): 299-308. LIU Yang, LIU Xiaoyun, LI Yufei. Evaluation of campus emergency management capability based on improved matter-element extension model[J]. Chinese Journal of Management Science, 2022, 30(11): 299-308. [23] 程元庚, 李福林, 范明元, 等. 基于组合赋权和改进物元可拓模型的泗河生态系统健康评估[J]. 济南大学学报(自然科学版), 2021, 35(3): 230-238. CHENG Yuangeng, LI Fulin, FAN Mingyuan, et al. Ecosystem health assessment of the Sihe River based on combined weighting and improved matter element extension model[J]. Journal of University of Jinan (Science and Technology), 2021, 35(3): 230-238. [24] 李强年, 赵巧妮. 基于层次熵物元可拓模型的绿色建筑绿色度评价: 以甘肃省为例[J]. 建筑节能, 2020, 48(7): 66-71. LI Qiangnian, ZHAO Qiaoni. Green degree evaluation of green building based on hierarchical-entropy matter-element extension model: on Gansu Province[J]. Building Energy Efficiency, 2020, 48(7): 66-71.