•  
  •  
 

Abstract

To investigate the effect of heterogeneity of cement mortar on the micro-cracking behavior of cement-stabilized macadam (CSM) material, this paper built a circular aggregate micro-fracture model based on the finite element method (FEM). Meanwhile, the micro-cracking behavior of the material was simulated by embedding a zero-thickness cohesive element with a bilinear cohesive zone model, and the material random field with Weibull distribution was introduced to characterize the heterogeneity characteristics of the mortar matrix and interface transition zone (ITZ). Based on virtual semicircular bending (SCB) tests, this paper simulated the micro-cracking process and analyzed the influence of material homogeneity on the micro-cracking behavior of CSM. The results reveal that the built heterogeneous micro-fracture model can achieve accurate simulation of micro-fractures. The generation of macroscopic cracks in CSM material undergoes the process of micro-crack initiation and rapid penetration, and interface and pore defects are the weak areas for micro-crack propagation. The crack resistance of CSM material decreases with the increasing non-uniformity of the random field. It is recommended that effective measures should be taken to improve the mixing uniformity of cement mortar in the actual construction process to enhance the crack resistance of CSM material.

Publication Date

1-18-2024

DOI

10.14048/j.issn.1671-2579.2023.06.046

First Page

290

Last Page

297

Submission Date

March 2025

Reference

[1] DONG Q, ZHAO X K, CHEN X Q, et al. Long-term mechanical properties of in situ semi-rigid base materials[J]. Road Materials and Pavement Design, 2021, 22(7): 1692-1707. [2] 钟勇强,黄晓明,马涛.基于室内结构试验的半刚性基层开裂数值仿真[J].北京工业大学学报,2013,39(5):690‑695,729. ZHONG Yongqiang, HUANG Xiaoming, MA Tao. Numerical simulation of semi-rigid base cracking based on structure experiment [J]. Journal of Beijing University of Technology, 2013, 39(5): 690-695, 729. [3] CHEN X Q, YUAN J W, DONG Q, et al. Meso-scale cracking behavior of Cement Treated Base material[J]. Construction and Building Materials, 2020, 239: 117823. [4] 赵晓康, 董侨, 陈雪琴, 等. 考虑初始缺陷的水泥基复合材料细观开裂研究[J]. 中国公路学报, 2020, 33(10): 230-239. ZHAO Xiaokang, DONG Qiao, CHEN Xueqin, et al. Mesoscale cracking of cement-treated composites with initial defects[J]. China Journal of Highway and Transport, 2020, 33(10): 230-239. [5] 曾梦澜, 薛子龙, 谷世君, 等. 开级配水泥稳定碎石基层路用性能的试验研究[J]. 北京工业大学学报, 2015, 41(4): 579-583. ZENG Menglan, XUE Zilong, GU Shijun, et al. Trial study on the pavement performance of open graded cement stabilized aggregate base[J]. Journal of Beijing University of Technology, 2015, 41(4): 579-583. [6] 吕悦晶, 魏彩霞, 张蕾, 等. 基于CT图像的水泥稳定碎石环形分区损伤研究[J]. 中外公路, 2021, 41(3): 269-273. LYU Yuejing, WEI Caixia, ZHANG Lei, et al. Study on annular partition damage of cement stabilized macadam based on CT image [J]. Journal of China & Foreign Highway, 2021, 41(3): 269-273. [7] 韦金城.沥青路面半刚性基层材料与结构疲劳损伤研究[D].西安:长安大学,2014. WEI Jincheng. Study on fatigue damage of semi-rigid base materials and structures of asphalt pavement [D]. Xi'an: Chang'an University, 2014. [8] 张显安, 周宇豪, 李雪连, 等. 振动搅拌水泥稳定碎石的力学性能研究[J]. 中外公路, 2021, 41(4): 332-336. ZHANG Xian’an, ZHOU Yuhao, LI Xuelian, et al. Study on mechanical properties of cement stabilized crushed stone by vibration mixing [J]. Journal of China & Foreign Highway, 2021, 41(4): 332-336. [9] 金浏.细观混凝土分析模型与方法研究[D].北京:北京工业大学,2014. JIN Liu. Study on mesoscopic model and analysis method of concrete [D]. Beijing: Beijing University of Technology, 2014. [10] 龙慧, 刘义伦, 李松柏. 基于有限单元法的裂纹梁结构疲劳寿命预测模型[J]. 中南大学学报(自然科学版), 2020, 51(4): 953-961. LONG Hui, LIU Yilun, LI Songbai. Fatigue life predication model for cracked beam structure based on finite element method[J]. Journal of Central South University (Science and Technology), 2020, 51(4): 953-961. [11] 叶丹燕, 王浩, 王帅, 等. 粗集料形状对纤维混凝土力学性能影响的数值模拟[J]. 混凝土, 2015(12): 97-101. YE Danyan, WANG Hao, WANG Shuai, et al. Numerical simulation on mechanical property effect of fiber reinforced concrete by the shape of coarse aggregate[J]. Concrete, 2015(12): 97-101. [12] 徐海滨, 杜修力. 基于预插黏性界面单元的混凝土细观拉伸断裂过程数值模拟[J]. 北京工业大学学报, 2014, 40(11): 1666-1672. XU Haibin, DU Xiuli. Numerical simulation of mesoscopic tensile fracture process of concrete using the cohesive elements[J]. Journal of Beijing University of Technology, 2014, 40(11): 1666-1672. [13] KOUTSOURELAKIS P S, DEODATIS G. Simulation of multidimensional binary random fields with application to modeling of two-phase random media[J]. Journal of Engineering Mechanics, 2006, 132(6): 619-631. [14] PUGLIA V B, KOSTESKI L E, RIERA J D, et al. Random field generation of the material properties in the lattice discrete element method[J]. The Journal of Strain Analysis for Engineering Design, 2019, 54(4): 236-246. [15] GRASSL P, BAŽANT Z P. Random lattice-particle simulation of statistical size effect in quasi-brittle structures failing at crack initiation[J]. Journal of Engineering Mechanics, 2009, 135(2): 85-92. [16] 曹庆坚.基于网格模型的混凝土细观结构数值模拟[D].大连:大连理工大学,2006. CAO Qingjian. Numerical simulation of concrete mesostructure based on grid model [D]. Dalian: Dalian University of Technology, 2006. [17] BANDYOPADHYAYA R, DAS A, BASU S. Numerical simulation of mechanical behaviour of asphalt mix[J]. Construction and Building Materials, 2008, 22(6): 1051-1058. [18] DUGDALE D S. Yielding of steel sheets containing slits[J]. Journal of the Mechanics and Physics of Solids, 1960, 8(2): 100-104. [19] BARENBLATT G I. The mathematical theory of equilibrium cracks in brittle fracture[J]. Advances in Applied Mechanics, 1962, 7: 55-129. [20] YANG Z J, SU X T, CHEN J F, et al. Monte Carlo simulation of complex cohesive fracture in random heterogeneous quasi-brittle materials[J]. International Journal of Solids and Structures, 2009, 46(17): 3222-3234. [21] WANG X F, ZHANG M Z, JIVKOV A P. Computational technology for analysis of 3D meso-structure effects on damage and failure of concrete[J]. International Journal of Solids and Structures, 2016, 80: 310-333. [22] ZHAO Y J, NI F J, ZHOU L, et al. Heterogeneous fracture simulation of asphalt mixture under SCB test with cohesive crack model[J]. Road Materials and Pavement Design, 2017, 18(6): 1411-1422. [23] VAN MIER J G M, VAN VLIET M R A, WANG T K. Fracture mechanisms in particle composites: statistical aspects in lattice type analysis[J]. Mechanics of Materials, 2002, 34(11): 705-724.

Share

COinS