•  
  •  
 

Abstract

In the production and application of temperature regeneration asphalt mixtures, temperature regeneration agents are crucial for the performance of asphalt mixtures. Based on the functions of raw materials such as temperature mixing agents, regeneration agents and penetrants, this paper determined the appropriate mixing content by studying the influence of aged asphalt's performance. Then, a new type of temperature regeneration agent was developed by compounding, and its regeneration effect and mixture performance were evaluated. The results show that the regeneration agent can restore the performance of aged asphalt, and the mixing content of 8% is closest to the original asphalt. Meanwhile, the effect of temperature mixing agents on the performance of asphalt is relatively small, with the cooling effect mainly achieved by interface lubrication. As the mixing content increases, the contact angle of asphalt decreases. Based on the comprehensive conventional performance, the mixing content of temperature mixing agents is determined to be 0.4%. Compared with ordinary regeneration agents, the temperature regeneration agents with 0.5% of the penetrant have better penetration performance, which can penetrate into the interior of aged asphalt faster and improve the performance of aged asphalt. When the mixing content of the new temperature regeneration agent is 8%, the regeneration rate of various properties of aged asphalt is 63.5%-101.2%, and the comprehensive regeneration rate is 90.1%, indicating sound regeneration effect. Compared to thermal regeneration asphalt mixture, the new temperature regeneration agent can effectively reduce the mixing and compaction temperature of asphalt mixtures by 22℃, and the high-temperature performance of thermal regeneration asphalt mixtures is slightly reduced. Additionally, the low-temperature performance is improved, and the water stability changes are small, with all indicators meeting the specification requirements.

Publication Date

1-18-2024

DOI

10.14048/j.issn.1671-2579.2023.06.047

First Page

298

Last Page

307

Submission Date

March 2025

Reference

[1] 任瑞波, 范文淼, 冯美军, 等. 沥青混合料再生技术研究进展[J]. 石油沥青, 2020, 34(4): 9-12,23. REN Ruibo, FAN Wenmiao, FENG Meijun, et al. Research progress on the regeneration technology of asphalt mixture[J]. Petroleum Asphalt, 2020, 34(4): 9-12,23. [2] 林翔.沥青路面再生利用关键技术研究[D].北京:北京工业大学,2010. LIN Xiang. Key technologies for the reuse of asphalt pavement [D]. Beijing: Beijing University of Technology, 2010. [3] 李渠源, 梁乃兴, 杨卓林, 等. 不同类型温拌沥青混合料长期性能研究[J]. 中外公路, 2022, 42(5): 189-193. LI Quyuan, LIANG Naixing, YANG Zhuolin, et al. Study on long term performance of different types of warm mix asphalt mixture[J]. Journal of China & Foreign Highway, 2022, 42(5): 189-193. [4] 吴伟民. 沥青路面就地热再生技术在公路养护中的应用[J]. 智能城市, 2021, 7(11): 93-94. WU Weimin. The application of hot in-place recycling technology of asphalt pavement in highway maintenance [J]. Intelligent City, 2021, 7(11): 93-94. [5] 杨涟, 徐周聪, 周浩南, 等. 掺加BFS的乳化沥青冷再生混合料路用性能研究[J]. 重庆交通大学学报(自然科学版), 2022, 41(2): 124-130. YANG Lian, XU Zhoucong, ZHOU Haonan, et al. Road performance of emulsified asphalt cold recycling mixture with BFS[J]. Journal of Chongqing Jiaotong University (Natural Science), 2022, 41(2): 124-130. [6] 李煜彬, 王端宜, 郭秀林. 基于沥青荧光强度的再生沥青融合效果评价[J]. 中外公路, 2022, 42(1): 193-198. LI Yubin, WANG Duanyi, GUO Xiulin. Evaluation of fusion effect of recycled asphalt based on the florescence intensity[J]. Journal of China & Foreign Highway, 2022, 42(1): 193-198. [7] 陈华鑫, 崔宇, 尹艳平, 等. 再生剂类型对沥青抗老化性能的影响[J]. 中国科技论文, 2022, 17(6): 589-594. CHEN Huaxin, CUI Yu, YIN Yanping, et al. Influence of regeneration agent type on aging resistance properties of asphalt[J]. China Sciencepaper, 2022, 17(6): 589-594. [8] 郭乃胜, 谭忆秋, 赵颖华. 温拌再生沥青混合料路用性能关键因素影响分析[J]. 公路交通科技, 2015, 32(2): 1-7. GUO Naisheng, TAN Yiqiu, ZHAO Yinghua. Effect of key factors on performance of WMA containing RAP material[J]. Journal of Highway and Transportation Research and Development, 2015, 32(2): 1-7. [9] 谢远光, 殷鹏. 基于新型再生剂的SBS改性沥青的流变特性及微观机制[J]. 新型建筑材料, 2021, 48(6): 95-100. XIE Yuanguang, YIN Peng. Rheological characteristics and micro mechanism of SBS modified asphalt based on new regenerative agent[J]. New Building Materials, 2021, 48(6): 95-100. [10] 宋云连, 蒋宇, 刘恒. 温拌剂及沥青类型对混合料动态模量的影响研究[J]. 中外公路, 2022, 42(6): 215-220. SONG Yunlian, JIANG Yu, LIU Heng. Influence of warm mixture and asphalt type on dynamic modulus of mixture[J]. Journal of China & Foreign Highway, 2022, 42(6): 215-220. [11] 宋云连, 丁楠, 刘恒, 等. 温拌剂种类及掺量对不同沥青流变性能的影响[J]. 复合材料学报, 2018, 35(2): 451-459. SONG Yunlian, DING Nan, LIU Heng, et al. Effect of warm mix agents type and dosage on rheological property of different asphalt[J]. Acta Materiae Compositae Sinica, 2018, 35(2): 451-459. [12] 郭乃胜, 尤占平, 赵颖华, 等. 考虑再生剂作用的温拌再生沥青混合料路用性能[J]. 建筑材料学报, 2015, 18(4): 674-681. GUO Naisheng, YOU Zhanping, ZHAO Yinghua, et al. Performance of warm mix asphalt with recycled asphalt mixtures considering the effect of rejuvenating agent[J]. Journal of Building Materials, 2015, 18(4): 674-681. [13] 祁文洋, 李立寒, 黄毅. 沥青再生剂扩散程度评价与影响因素研究[J]. 建筑材料学报, 2014, 17(6): 1020-1024. QI Wenyang, LI Lihan, HUANG Yi. Study on the evaluation of regenerant diffusion in aged bitumen and its influencing factors[J]. Journal of Building Materials, 2014, 17(6): 1020-1024. [14] 周志刚, 杨银培, 张清平, 等. 再生剂对旧沥青的再生行为[J]. 交通运输工程学报, 2011, 11(6): 10-16. ZHOU Zhigang, YANG Yinpei, ZHANG Qingping, et al. Recycling behavior of recycling agent on aged asphalt[J]. Journal of Traffic and Transportation Engineering, 2011, 11(6): 10-16. [15] ZHAO P H, REN R B, ZHOU H, et al. Preparation and properties of imidazoline surfactant as additive for warm mix asphalt[J]. Construction and Building Materials, 2021, 273: 121692. [16] 杨彦海, 胡艳丽, 刘岩, 等. 温拌沥青路面实体工程病害调查与分析评价[J]. 中外公路, 2020, 40(4): 43-47. YANG Yanhai, HU Yanli, LIU Yan, et al. Investigation and assessment of diseases in entity engineering of warm mixed asphalt pavement[J]. Journal of China & Foreign Highway, 2020, 40(4): 43-47. [17] ZHAO P H, DONG M L, YANG Y S, et al. Research on the mechanism of surfactant warm mix asphalt additive-based on molecular dynamics simulation[J]. Coatings, 2021, 11(11): 1303.

Share

COinS