Abstract
To accurately control the crack diseases of semi-rigid base pavement structures in cold regions, this paper applied the theory of mathematical statistical analysis to investigate and statistically analyze the 66 km pavement crack data of two highways. Meanwhile, data analysis was adopted to study the correlation between surface cracks and base cracks, and the prevention and control effect of asphalt-stabilized cobble replacement on cracks in the original 20 m/lane pre-cut cracks and damaged base was analyzed. The results show that the pavement structure consists of a 16 cm asphalt surface layer and a 36 cm cement-stabilized cobble base layer. The proportion of reflection cracks in the surface transverse cracks is 76%, while that of longitudinal cracks that penetrate the base layer in the surface longitudinal cracks is 14%. The longitudinal crack diseases are more likely to occur along the wheel track direction on both sides of the base layer transverse cracks, and continue to propagate along the tip of the longitudinal cracks. The pavement structure consists of a 12 cm asphalt surface layer and a 20 cm cement-stabilized cobble base layer, with transverse cracks in the surface layer and longitudinal cracks in the base layer corresponding one by one. Additionally, 53% of the pre-cut cracks in the semi-rigid base layers will reflect to the surface layers, forming transverse cracks in the surface layers. Replacing damaged base layers with asphalt-stabilized cobble can prevent the propagation of crack tips in the base layers and eliminate reflection crack diseases.
Publication Date
1-18-2024
DOI
10.14048/j.issn.1671-2579.2023.06.011
First Page
68
Last Page
73
Submission Date
March 2025
Recommended Citation
Yuan, WANG; Qinlong, JIA; Xiaoyan, FAN; Honghua, XUE; and Wentao, ZHANG
(2024)
"Study on correlation between surface and base cracks of expressways in winter cold region,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
6, Article 121.
DOI: 10.14048/j.issn.1671-2579.2023.06.011
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss6/121
Reference
[1] 郑健龙, 关宏信. 温缩型反射裂缝的热粘弹性有限元分析[J]. 中国公路学报, 2001, 14(3): 1-5. ZHENG Jianlong, GUAN Hongxin. A finite element analysis based on thermal viscoelasticity theory of reflective crack resulting from low temperature shrinkage[J]. China Journal of Highway and Transport, 2001, 14(3): 1-5. [2] 李新宏. 温度作用下半刚性基层道路反射裂缝的应力分析与处理方法研究[J]. 公路, 2017, 62(6): 54-60. LI Xinhong. Study on stress analysis and treatment method of reflective cracks in semi-rigid base road under temperature action [J]. Highway, 2017, 62(6): 54-60. [3] 栾利强. 半刚性基层沥青路面疲劳裂缝扩展与寿命预估研究[J]. 土木工程学报, 2017, 50(9): 118-128. LUAN Liqiang. Research on fatigue crack propagation and fatigue life prediction of semi-rigid base asphalt pavement[J]. China Civil Engineering Journal, 2017, 50(9): 118-128. [4] 叶向前, 邹晓翎, 何虹霖, 等. 半刚性基层沥青路面低温开裂成因研究综述[J]. 中外公路, 2020, 40(4): 62-67. YE Xiangqian, ZOU Xiaoling, HE Honglin, et al. Summary of research on the causes of low temperature cracking of semi-rigid base asphalt pavement [J]. Journal of China & Foreign Highway, 2020, 40(4): 62-67. [5] 黄允江, 汪婧, 刘平, 等. 半刚性基层沥青路面反射裂缝处治新方法探讨[J]. 公路交通技术, 2016, 32(4): 43-48. HUANG Yunjiang, WANG Jing, LIU Ping, et al. Exploring new method to treat reflection crack on semi rigid base asphalt pavement[J]. Technology of Highway and Transport, 2016, 32(4): 43-48. [6] 蒋应军, 薛航, 薛辉, 等. 半刚性基层预锯缝及铺土工布的路面防裂措施[J]. 长安大学学报(自然科学版), 2006, 26(2): 6-9. JIANG Yingjun, XUE Hang, XUE Hui, et al. Preventing cracks of asphalt pavement based on pre-cutting crack and paving geotextile at semi-rigid type base[J]. Journal of Chang’an University (Natural Science Edition), 2006, 26(2): 6-9. [7] 胡杰.沥青稳定碎石基层抗裂机理研究[D].长沙:长沙理工大学,2008. HU Jie. Study on crack resistance mechanism of asphalt-stabilized macadam subbase [D]. Changsha: Changsha University of Science and Technology, 2008. [8]王雪莲, 黄晓明, 卞国剑. LSPM对防治半刚性基层沥青路面反射裂缝机理分析[J]. 公路交通科技, 2016, 33(7): 12-18. WANG Xuelian, HUANG Xiaoming, BIAN Guojian. Mechanism analysis of LSPM on prevention and control of reflection cracks in semi-rigid base asphalt pavement[J]. Highway Traffic Science and Technology, 2016, 33(7): 12-18. [9] 王雪莲, 黄晓明, 卞国剑. 基于数值模拟的半刚性基层沥青路面反射裂缝扩展路径分析[J]. 公路, 2018, 63(5): 1-6. WANG Xuelian, HUANG Xiaoming, BIAN Guojian. Numerical simulation analysis on reflective cracking extended path of semi-rigid base asphalt mixture[J]. Highway, 2018, 63(5): 1-6. [10] 郑健龙.基于结构层寿命递增的耐久性沥青路面设计新思想[J].中国公路学报,2014,27(1):1‑7. ZHENG Jianlong. New structure design of durable asphalt pavement based on life increment [J]. China Journal of Highway and Transport, 2014, 27(1): 1-7 [11] 冯伟, 刘朝晖, 柳力, 等. 半刚性基层沥青路面车辙有限元模拟及灰关联分析[J]. 中外公路, 2021, 41(6): 60-65. FENG Wei, LIUZhaohui, LIU Li, et al. Rutting finite element simulation and grey correlation analysis of semi-rigid base asphalt pavement [J]. Journal of China & Foreign Highway, 2021, 41(6): 60-65.