•  
  •  
 

Abstract

To study the stress characteristics of corrugated steel web box girders under vertical temperature gradient loads, this paper employed the civil structural nonlinear simulation software Midas FEA to build a three-dimensional finite element analysis model of corrugated steel web box girder bridges. Meanwhile, the temperature effects of corrugated steel web box girders under two constraint conditions of simply supported structures and continuous structures under vertical temperature gradient loads were compared and analyzed. The results demonstrate that under vertical temperature gradient loads, the temperature effect generated by corrugated steel web box girders is significant and cannot be ignored. The temperature effect of corrugated steel web box girders under continuous structural constraints is more significant than that of the simply supported structures under temperature gradient loads. Therefore, the influence of boundary constraint conditions on the temperature effect of corrugated steel web box girder bridges should be comprehensively considered. Additionally, the maximum temperature stress is obtained at the connection joint between the top and bottom concrete and the corrugated steel web, and the peak stress of this structure should be given special attention during the design stage.

Publication Date

1-18-2024

DOI

10.14048/j.issn.1671-2579.2023.06.013

First Page

79

Last Page

84

Submission Date

March 2025

Reference

[1] 王力, 刘世忠, 路韡, 等. 新型波形钢腹板组合箱梁温度效应[J]. 浙江大学学报(工学版), 2021, 55(4): 675-683. WANG Li, LIU Shizhong, LU (WeiXue), et al. Temperature effect of new-type composite box girder with corrugated steel webs[J]. Journal of Zhejiang University (Engineering Science), 2021, 55(4): 675-683. [2] 邓文琴, 刘朵, 冯杰, 等. 波形钢腹板箱梁桥异步施工节段足尺模型试验研究[J]. 桥梁建设, 2019, 49(1): 53-58. DENG Wenqin, LIU Duo, FENG Jie, et al. Segmental full-scale model test for asynchronous construction of box girder bridge with corrugated steel webs[J]. Bridge Construction, 2019, 49(1): 53-58. [3] 袁卓亚, 李立峰, 刘清, 等. 波形钢腹板组合箱梁横向内力分析及试验研究[J]. 中国公路学报, 2015, 28(11): 73-81. YUAN Zhuoya, LI Lifeng, LIU Qing, et al. Analysis and experimental study of transverse internal force in composite box-girder with corrugated steel webs[J]. China Journal of Highway and Transport, 2015, 28(11): 73-81. [4] 黎海堤, 杨磊. 基于断裂力学的波形钢腹板结构疲劳分析研究[J]. 中外公路, 2023, 43(2): 91-95. LI Haidi, YANG Lei. Fatigue analysis of corrugated steel web structure based on fracture mechanics [J]. Journal of China & Foreign Highway, 2023, 43(2): 91-95. [5] 姜竹昌, 高华睿, 曹洪亮, 等. 大跨径波形钢腹板箱梁桥截面竖向温度梯度研究[J]. 中外公路, 2021, 41(4): 125-130. JIANG Zhuchang, GAO Huarui, CAO Hongliang, et al. Study on vertical temperature gradient of long-span box girder bridge with corrugated steel webs [J]. Journal of China & Foreign Highway, 2021, 41(4): 125-130. [6] 刘阳帆, 钟扬, 樊林杰, 等. 日照下波形钢腹板箱梁桥竖向温度分布研究[J]. 公路与汽运, 2022(3): 86-89,103. LIU Yangfan, ZHONG Yang, FAN Linjie, et al. Study on vertical temperature distribution of box girder bridge with corrugated steel webs under sunshine [J]. Highways & Automotive Applications, 2022(3): 86-89,103. [7] 彭长军. 波形钢腹板连续梁桥收缩徐变效应研究[J]. 工程建设, 2020, 52(7): 24-29. PENG Changjun. Research on shrinkage and creep effect of continuous girder bridges with corrugated steel webs[J]. Engineering [8] SHI F, WANG D S, CHEN L. Study of flexural vibration of variable cross-section box-girder bridges with corrugated steel webs[J]. Structures, 2021, 33: 1107-1118. [9] 李晓超. PC梁截面温度梯度对钢绞线预应力影响规律研究[J]. 中外公路, 2021, 41(2): 172-176. LI Xiaochao. Study on the influence of section temperature gradient of PC beam on the prestress of steel strand [J]. Journal of China & Foreign Highway, 2021, 41(2): 172-176. [10] 施智, 罗吉智, 彭蓉. 大跨径波形钢腹板预应力混凝土箱梁桥设计与研究[J]. 中外公路, 2021, 41(4): 172-177. SHI Zhi, LUO Jizhi, PENG Rong. Design and Research of Long-span Prestressed Concrete Box Girder Bridge with Corrugated Steel Webs [J]. Journal of China & Foreign Highway, 2021, 41(4): 172-177. [11] 强俊涛, 姚晨, 张峰, 等. 波形钢腹板组合桥梁温度效应研究[J]. 公路, 2016, 61(3): 54-57. QIANG Juntao, YAO Chen, ZHANG Feng, et al. Study of temperature effect on the composed bridge with corrugated steel webs[J]. Highway, 2016, 61(3): 54-57. [12] 管怀金. 波形钢腹板箱梁桥竖向温度梯度效应研究[J]. 公路与汽运, 2019(2): 110-113,117. GUAN Huaijin. Study on temperature effect of composite bridge with corrugated steel webs [J]. Highways & Automotive Applications, 2019(2): 110-113,117. [13] 杨文斌.大跨径单箱双室箱梁桥温度梯度研究[J].中外公路,2023,43(4):110‑117. YANG Wenbin. Study on temperature gradient of long-span single-box double-chamber box girder bridge [J]. Journal of China and Foreign Highway, 2023, 43(4): 110-117. [14] 卫俊岭, 王浩, 茅建校, 等. 混凝土连续箱梁桥温度场数值模拟及实测验证[J]. 东南大学学报(自然科学版), 2021, 51(3): 378-383. WEI Junling, WANG Hao, MAO Jianxiao, et al. Numerical simulation and test verification for temperature field of concrete continuous box girder bridges[J]. Journal of Southeast University (Natural Science Edition), 2021, 51(3): 378-383. [15] 龙志林, 李龙, 涂光亚, 等. 大跨度预应力混凝土斜拉桥温度效应研究[J]. 中外公路, 2014, 34(4): 132-135. LONG Zhilin, LI Long, TU Guangya, et al. Study on temperature effect of long-span prestressed concrete cable-stayed bridge [J]. Journal of China & Foreign Highway, 2014, 34(4): 132-135. [16] 潘旦光, 郭馨远, 丁民涛, 等. 单箱三室混凝土箱梁温度分布研究[J]. 河海大学学报(自然科学版), 2018, 46(6): 513-520. PAN Danguang, GUO Xinyuan, DING Mintao, et al. Study on the temperature distribution of a single box three-room concrete girder[J]. Journal of Hohai University (Natural Sciences), 2018, 46(6): 513-520. [17] 薛嵩, 戴公连, 闫斌. 预应力混凝土槽型梁日照温度荷载模式研究[J]. 中国科学(技术科学), 2016, 46(3): 286-292. XUE Song, DAI Gonglian, YAN Bin. Sunshine temperature mode of prestressed concrete bridge with U-shape section[J]. Scientia Sinica (Technologica), 2016, 46(3): 286-292. [18] 赵品, 叶见曙. 波形钢腹板箱梁桥面板横向温度效应分析[J]. 哈尔滨工程大学学报, 2019, 40(5): 974-978. ZHAO Pin, YE Jianshu. Analysis of transverse temperature effects on the deck of box girder with corrugated steel webs[J]. Journal of Harbin Engineering University, 2019, 40(5): 974-978. [19] 杨永伟,李凯,邓露等.独塔斜拉桥钢‑混结合段的试验与数值研究[J].中外公路,2022,42(6):62‑71. YANG Yongwei, LI Kai, DENG Lu, et al. Experimental and numerical study on steel-concrete composite section of single-tower cable-stayed bridge [J]. Journal of China and Foreign Highway, 2022, 42(6): 62-71. [20] 丁幼亮, 王高新, 周广东, 等. 基于现场监测数据的润扬大桥斜拉桥钢箱梁温度场全寿命模拟方法[J]. 土木工程学报, 2013, 46(5): 129-136. DING Youliang, WANG Gaoxin, ZHOU Guangdong, et al. Life-cycle simulation method of temperature field of steel box girder for Runyang cable-stayed bridge based on field monitoring data[J]. China Civil Engineering Journal, 2013, 46(5): 129-136. [21] 丁幼亮, 王高新, 周广东, 等. 基于长期监测数据的润扬大桥扁平钢箱梁温度分布特性[J]. 中国公路学报, 2013, 26(2): 94-101. DING Youliang, WANG Gaoxin, ZHOU Guangdong, et al. Temperature distribution on flat steel box girders of Runyang bridges based on long-term measurement data[J]. China Journal of Highway and Transport, 2013, 26(2): 94-101. [22] 陈彦江, 王力波, 李勇. 钢-混凝土组合梁桥温度场及温度效应研究[J]. 公路交通科技, 2014, 31(11): 85-91. CHEN Yanjiang, WANG Libo, LI Yong. Research of temperature field and its effect of steel-concrete composite girder bridge[J]. Journal of Highway and Transportation Research and Development, 2014, 31(11): 85-91. [23] 上海市城市建设设计研究总院,同济大学.钢‒混凝土组合桥梁设计规范:GB 50917—2013[S].北京:中国建筑工业出版社,2014. Shanghai Urban Construction Design and Research Institute, Tongji University. Design Code for Steel-Concrete Composite Bridges: GB 50917—2013 [S]. Beijing: China Architecture & Building Press, 2014.

Share

COinS