Abstract
This paper introduced the design methods for the stability of struts in Chinese and European specifications for steel structure bridges, and compared and analyzed the differences and similarities between the section classification, overall stability curve, and local stability curve in relevant Chinese and European specifications. By taking H-shaped steel components as an example, it calculated the strut stability and compared the results with finite element calculations. The results show that in terms of section classification, JTG D64-2015 is divided into five categories (S1, S2, S3, S4, and S5), while EC3 is divided into four categories (1, 2, 3, 4), with the corresponding relationship of mechanical performance being 1-a, 2-b, 3,4-c, and 5-d. Additionally, for the overall stability curve, when the slenderness ratio λn is no more than 1.5, the coefficient of stability corresponding to the c/d curve in JTG D64-2015 is 2%-5% lower than that of EC3. When λn is more than 1.5, the coefficients of stability corresponding to the Chinese and European specifications are basically the same. In terms of local stability, JTG D64-2015 only utilizes effective cross-sectional area calculation for the web plate, while EC3 has different calculation formulas for the flange and web plate. The comparative analysis of Chinese and European specifications and finite element calculation results shows that both the specifications underestimate the ultimate bearing capacity of struts, with the results obtained by Chinese and European specifications being 3%-13% and 1%-12% lower respectively in most cases. Relatively speaking, JTG D64-2015 in Chinese specifications is more conservative in terms of stable design.
Publication Date
1-18-2024
DOI
10.14048/j.issn.1671-2579.2023.06.045
First Page
284
Last Page
289
Submission Date
March 2025
Recommended Citation
Baoshan, DUAN; Li, DUAN; Yuansong, LI; and Chunhua, ZHANG
(2024)
"Comparative study on strut stability calculation of long⁃span highway truss suspension bridge based on chinese and european specificat ions,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
6, Article 155.
DOI: 10.14048/j.issn.1671-2579.2023.06.045
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss6/155
Reference
[1] 中交公路规划设计院有限公司. 公路钢结构桥梁设计规范: JTG D64—2015[S]. 北京: 人民交通出版社, 2015. CCCC Highway Consultants Co., Ltd. Specifications for Design of Highway Steel Bridge: JTG D64—2015[S]. Beijing: China Communications Press, 2015. [2] 姚行友, 李元齐, 沈祖炎, 等. 薄腹工字形截面轴压构件有效面积计算方法比较[J]. 建筑结构, 2011, 41(8): 75-78. YAO (HangXing)(You), LI Yuanqi, SHEN Zuyan, et al. Comparative investigation on estimation methods for effective area of thin-webbed I-shaped members under axial compression[J]. Building Structure, 2011, 41(8): 75-78. [3] 陈飞宇.中外规范关于公路悬索桥关键设计参数的比较研究[D].成都:西南交通大学,2019. CHEN Feiyu. Comparative study on key design parameters of highway suspension bridges according to chinese and foreign specifications [D]. Chengdu: Southwest Jiaotong University, 2019. [4] 杨胜, 樊小伟. 山区钢桁架悬索桥设计与施工[J]. 中外公路, 2021, 41(6): 141-144. YANG Sheng, FAN Xiaowei. Design and Construction of Steel Truss Suspension Bridge in Mountain Area [J]. Journal of China & Foreign Highway, 2021, 41(6): 141-144. [5] ÅKESSON B. Plate buckling in bridges and other structures[M]. Boca Raton, FL: Taylor & Francis, 2007. [6] BS EN 1993‑1‑5 Eurocode 3:Design of steel structures. Plated structural elements[S],2006. [7] Eurocode 3: Design of steel structures - Part 1-1: General rules and rules for buildings: DS/EN 1993-1-1/AC: 2009[S]. Danish Standards[ds], 2009. [8] 徐克龙.高强度钢材焊接工字形梁局部稳定性能及设计方法研究[D].北京:清华大学,2017. XU Kelong. Study on local stability performance and design method of high-strength steel welded i-beams [D]. Beijing: Tsinghua University, 2017. [9] 熊晓莉,庞瑞.剖分T型钢压杆整体失稳问题研究[J].建筑结构,2013,43(13):58‑62. XIONG Xiaoli, PANG Rui. Study on overall buckling of split t-section steel compression members [J]. Building Structure, 2013, 43(13): 58-62 [10] 冯淑珍. 预应力混凝土盖梁开裂原因分析及加固方案研究[J]. 中外公路, 2021, 41(4): 116-118. FENG Shuzhen. Cracking Cause Analysis and Reinforcement Scheme Research of Prestressed Concrete Cap Beam [J]. Journal of China & Foreign Highway, 2021, 41(4): 116-118. [11] 施刚, 林错错, 王元清, 等. 高强度钢材工字形截面轴心受压短柱局部稳定试验研究[J]. 建筑结构学报, 2012, 33(12): 20-30. SHI Gang, LIN Cuocuo, WANG Yuanqing, et al. Experimental study on local buckling of high strength steel I-section stub columns under axial compression[J]. Journal of Building Structures, 2012, 33(12): 20-30. [12] 宋林, 吴大健, 段宝山. UHPC Π形梁桥设计计算中法标准对比[J]. 中外公路, 2020, 40(5): 87-92. SONG Lin, WU Dajian, DUAN Baoshan. Comparison of Chinese and French standards for design and calculation of UHPC Π-shaped beam bridge [J]. Journal of China & Foreign Highway, 2020, 40(5): 87-92. [13] 曹锋, 郑明杰, 马鹏, 等. 多跨加劲梁悬索桥非线性静风稳定性分析[J]. 中外公路, 2022, 42(4): 87-92. CAO Feng, ZHENG Mingjie, MA Peng, et al. Nonlinear aerostatic stability analysis of multi-span stiffening girder suspension bridge [J]. Journal of China & Foreign Highway, 2022, 42(4): 87-92. [14] 沈锐利, 侯康, 张新. 三塔四跨悬索桥合理结构布置形式研究[J]. 中外公路, 2019, 39(3): 101-106. SHEN Ruili, HOU Kang, ZHANG Xin. Study on reasonable structural arrangement of three-tower four-span suspension bridge [J]. Journal of China & Foreign Highway, 2019, 39(3): 101-106. [15] 任豪杰. Q690高强钢焊接工字形轴压柱局部和整体稳定相关性研究[D]. 西安: 西安建筑科技大学, 2017. REN Haojie. Study on the correlation between local and overall stability of high strength steel welded I-shaped axial compression column. Xi’an: Xi’an University of Architecture and Technology, 2017. [16] 陈丹阳. 中美欧钢结构规范受弯构件局部稳定性计算方法对比研究[D]. 成都: 西南石油大学, 2017. CHEN Danyang. Comparative study on local stability calculation methods of flexural members in Chinese, American and European steel structure codes. Chengdu: Southwest Petroleum University, 2017. [17] 刘颖, 杨明, 张春华. 中澳规范混凝土结构受弯承载力对比分析[J]. 中外公路, 2021, 41(1): 103-107. LIU Ying, YANG Ming, ZHANG Chunhua. Comparative analysis of flexural bearing capacity of concrete structures in Chinese and Australian codes [J]. Journal of China & Foreign Highway, 2021, 41(1): 103-107. [18] CHEN Y Y, CHENG X, NETHERCOT D A. An overview study on cross-section classification of steel H-sections[J]. Journal of Constructional Steel Research, 2013, 80: 386-393. [19] 熊二刚, 祖坤, 胡勤斌, 等. 无腹筋混凝土受弯构件基于力学分析的受剪计算[J]. 华南理工大学学报(自然科学版), 2022, 50(11): 115-124,132. XIONG Ergang, ZU Kun, HU Qinbin, et al. Shear capacity prediction for RC beams without stirrups based on mechanical research[J]. Journal of South China University of Technology (Natural Science Edition), 2022, 50(11): 115-124,132. [20] 施刚,徐克龙,林错错.460 MPa级高强度钢材工字形截面轴心受压柱局部稳定有限元分析和设计方法研究[J].工业建筑,2016,46(7):22‑31. SHI Gang, XU Kelong, LIN Cuocuo. Finite element analysis and design method study on local stability of 460 mpa grade high-strength steel i-section axially compressed columns [J]. Industrial Construction, 2016, 46(7): 22-31.