•  
  •  
 

Abstract

To ensure that the alignment and internal forces of the cable-stayed arch-type bridge towers meet the design requirements and achieve safe construction of the bridge towers, this paper built a finite element model to study the variation rules of the alignment and stress during the construction of arch-type bridge towers, analyzing the influence of temperature effects on the arch-type bridge towers, with relevant control measures proposed. The results indicate that when the temperature gradient in the transverse direction of the bridge is only considered, under the same temperature gradient, the tensile stress of the outer tower limbs affected by sunlight is greater than that of the inner tower limbs, and the displacement of the tower limbs on both sides is the same and consistent with the sunlight direction. During the construction stage of the lower crossbeam and the closure stage of the bridge tower, the temperature effect on the bridge tower decreases. Additionally, the setting of the temporary lateral bracing, application of jacking force, and setting of the offsetting amount can reduce the axial displacement of tower limbs and tensile stress of tower limbs during construction, avoiding bridge tower cracking. After the jacking force application of the lateral bracing, the axial displacement of the bridge tower can be controlled within 5 mm. When two pieces of lateral bracing are set up, the removal sequence of temporary lateral bracing may not be considered. By comparing measured and theoretical data, it has been further verified that the setting of temporary lateral bracing and application of jacking force can effectively decrease the deviation of the bridge tower axis, with significant influence of the temperature gradient exerted on the alignment and stress of bridge towers.

Publication Date

1-18-2024

DOI

10.14048/j.issn.1671-2579.2023.06.022

First Page

140

Last Page

148

Submission Date

March 2025

Reference

[1] 陈开桥, 毛伟琦, 王吉连. 武汉大道金桥桥塔施工关键技术[J]. 世界桥梁, 2012, 40(1): 19-23. CHEN Kaiqiao, MAO Weiqi, WANG Jilian. Key techniques for construction of pylon of Jinqiao bridge on Wuhan avenue[J]. World Bridges, 2012, 40(1): 19-23. [2] 姚亚东, 徐佰顺, 贾舒阳, 等. 甬江铁路特大桥施工控制[J]. 世界桥梁, 2021, 49(1): 26-32. YAO Yadong, XU Baishun, JIA Shuyang, et al. Construction control for yongjiang river railway bridge[J]. World Bridges, 2021, 49(1): 26-32. [3] 王树良. 圆拱形斜拉桥桥塔超高支架稳定性分析[J]. 中外公路, 2022, 42(3): 142-149. WANG Shuliang. Stability analysis of super high support of arched cable-stayed bridge tower [J]. Journal of China & Foreign Highway, 2022, 42(3): 142-149. [4] 罗显平, 翁方文, 郑建新. 大跨斜拉桥索塔施工及控制技术研究[J]. 公路, 2017, 62(5): 86-90. LUO Xianping, WENG Fangwen, ZHENG Jianxin. Study on Construction and Control Technology of Cable Tower of Long-span Cable-stayed Bridge [J]. Highway, 2017, 62(5): 86-90. [5] 杨志军, 杨厚明. 钢管临时横撑在斜塔柱施工中的应用[J]. 山东交通科技, 2014(5): 78-79. [6] 吕长荣, 王岩. 内倾式斜拉桥桥塔临时横撑施工方案优化应用研究[J]. 公路, 2018, 63(9): 105-111. (LÜ/LV/LU/LYU) Changrong, WANG Yan. Application research of temporary cross bracing construction plan optimization of inward tilting cable-stayed bridge tower[J]. Highway, 2018, 63(9): 105-111. [7] 佟志峰, 熊雷, 刘小奇, 等. 单索面独斜塔斜拉桥桥塔施工关键设计参数影响研究[J]. 中外公路, 2022, 42(4): 47-52. TONG Zhifeng, XIONG Lei, LIU Xiaoqi, et al. Study on the influence of key design parameters of single cable plane single inclined tower cable-stayed bridge tower construction [J]. Journal of China & Foreign Highway, 2022, 42(4): 47-52. [8] 张丰, 颜东煌, 陈常松. 大跨度组合梁斜拉桥成桥状态参数敏感性分析[J]. 交通科学与工程, 2021, 37(2): 91-97. ZHANG Feng, YAN Donghuang, CHEN Changsong. Parameter sensitivity analysis of the long-span composite girder cable-stayed bridge in the finished bridge state[J]. Journal of Transport Science and Engineering, 2021, 37(2): 91-97. [9] 杨成洪, 吴道优, 向冠桦. 水滴形多曲率超高斜拉桥索塔线形控制技术[J]. 施工技术, 2020, 49(3): 33-36. YANG Chenghong, WU Daoyou, XIANG Guanhua. Linear control technology of the drop-shaped multi-curvature super-high cable-stayed bridge pylon[J]. Construction Technology, 2020, 49(3): 33-36. [10] 赵全成, 刘晓波, 左小明. 武汉青山长江公路大桥北塔临时横撑设计[J]. 桥梁建设, 2020, 50(S1): 100-105. ZHAO Quancheng, LIU Xiaobo, ZUO Xiaoming. Design of temporary lateral bracings for north pylon of Qingshan Changjiang River highway bridge in Wuhan[J]. Bridge Construction, 2020, 50(S1): 100-105. [11] 裴山, 陈常松. 嘉鱼长江公路大桥索塔应力及线形施工控制[J]. 中外公路, 2020, 40(3): 146-150. PEI Shan, CHEN Changsong. Tower stress and linear construction control of Jiayu Yangtze River Highway Bridge [J]. Journal of China & Foreign Highway, 2020, 40(3): 146-150. [12] 杨智文, 来晓理, 黄飞鸿, 等. 斜拉桥拱形主塔施工过程分析与下横梁预应力张拉工序优化[J]. 中外公路, 2020, 40(2): 78-81. YANG Zhiwen, LAI Xiaoli, HUANG Feihong, et al. Analysis of construction process of arch main tower of cable-stayed bridge and optimization of prestressed tension process of lower beam [J]. Journal of China & Foreign Highway, 2020, 40(2): 78-81. [13] 易云焜. 曲线形独塔无背索斜拉桥施工控制关键技术[J]. 桥梁建设, 2018, 48(2): 116-120. YI Yunkun. Key techniques for construction control of a curved single pylon cable-stayed bridge without backstays[J]. Bridge Construction, 2018, 48(2): 116-120. [14] 史晶,梅秀道,金红岩,等.全飘浮体系斜拉桥A形混凝土桥塔施工控制[J].桥梁建设,2020,50(S1):119‑125. SHI Jing, MEI Xiuda, JIN Hongyan, et al. Construction control of a-shaped concrete pylons of a cable-stayed bridge with a full-floating system [J]. Bridge Construction, 2020, 50(S1): 119-125. [15] 柳鑫星, 张雪松, 刘殿元, 等. 拱形钢塔斜拉桥线形控制技术[J]. 公路, 2013, 58(4): 36-39. LIU Xinxing, ZHANG Xuesong, LIU Dianyuan, et al. Linear control technology of arch steel tower cable-stayed bridge [J]. Highway, 2013, 58(4): 36-39. [16] 唐振洪. 益阳大桥温度影响分析[D]. 湘潭: 湖南科技大学, 2017. TANG Zhenhong. Temperature influence analysis of Yiyang Bridge. Xiangtan: Hunan University of Science and Technology, 2017. [17] 程东亚.江鱼型超高索塔力学性能及施工控制研究[D].长沙:长沙理工大学,2018. CHENG Dongya. Study on the mechanical properties and construction control of jiangyu-type ultra-high cable-stayed tower [D]. Changsha: Changsha University of Science and Technology, 2018. [18] 蒲黔辉, 熊赳, 王文东. 高低塔斜拉桥施工阶段温度效应分析[J]. 桥梁建设, 2018, 48(5): 21-26. PU Qianhui, XIONG Jiu, WANG Wendong. Analysis of temperature effect of cable-stayed bridge with unequal height pylons at construction stage[J]. Bridge Construction, 2018, 48(5): 21-26. [19] 江帆, 吴超, 张家玮. 桥塔临时附着结构风致抖振响应时域分析[J]. 中外公路, 2020, 40(5): 186-191. JIANG Fan, WU Chao, ZHANG Jiawei. Time domain analysis of wind-induced buffeting response of temporarily attached structures of a bridge tower[J]. Journal of China & Foreign Highway, 2020, 40(5): 186-191. [20] 郑光琴, 陈家勇, 李岳, 等. 合川渠江景观大桥美学设计[J]. 中外公路, 2023, 43(3): 146-149. ZHENG Guangqin, CHEN Jiayong, LI Yue, et al. Hechuan Qujiang Landscape Bridge Aesthetic Design [J]. Journal of China & Foreign Highway, 2023, 43(3): 146-149. [21] 同济大学. 公路桥梁抗风设计规范: JTG/T 3360-01—2018[S]. 北京: 人民交通出版社, 2018. Tongji University Wind-resistant Design Specification for Highway Bridges: JTG/T 3360-01—2018[S]. Beijing: China Communications Press, 2018.

Share

COinS