Abstract
As China's construction industry experiences booming development and the demand for transportation is increasing, continuous rigid frame bridges have become the main structural system for large-span bridges due to their advantages of avoiding system transformation, reducing deck expansion joints, and providing comfortable driving. However, due to the characteristics of their rigid frame systems and the shrinkage and creep properties of concrete materials, continuous rigid frame bridges are sensitive to changes in environmental temperature and humidity, which can even severely result in engineering diseases such as cracks and large deformation in the bridge, causing decreased driving comfort and safety hazards. By taking the the Yarlung Zangbo River Bridge as the engineering background, this paper studied the influence of temperature and humidity on the stress of continuous rigid frame bridges in plateau environment by finite element calculation. The calculation results show that temperature changes in plateau environments significantly affect the stress of rigid frame bridges. Temperature gradient changes can easily cause uneven structural stress distribution, while overall temperature changes significantly affect the displacement of rigid frame bridges. Additionally, the influence of humidity in plateau environments on bridge structures is mainly reflected in the deflection displacement at the central span, and the deflection displacement of continuous rigid frame bridges increases significantly in low-humidity environments.
Publication Date
1-18-2024
DOI
10.14048/j.issn.1671-2579.2023.06.027
First Page
171
Last Page
176
Submission Date
March 2025
Recommended Citation
Bowen, HE; Hao, SUN; and Shuo, WANG
(2024)
"Analysis of factors affecting stress and displacement of continuous rigid frame bridge in plateau environment,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
6, Article 27.
DOI: 10.14048/j.issn.1671-2579.2023.06.027
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss6/27
Reference
[1] 刘福才.高速铁路大跨度预应力混凝土连续梁桥施工监控研究[D].烟台:烟台大学,2022. LIU Fucai. Research on construction monitoring of large-span prestressed concrete continuous girder bridge for high-speed railway [D]. Yantai: Yantai University, 2022. [2] 陈爽, 唐慧琪, 李继芸, 等. 低湿环境对连续刚构桥收缩徐变影响分析[J]. 施工技术(中英文), 2022, 51(18): 34-38. CHEN Shuang, TANG Huiqi, LI Jiyun, et al. Influence of low humidity environment on shrinkage and creep of continuous rigid frame bridge[J]. Construction Technology, 2022, 51(18): 34-38. [3] 胡志礼. 某预应力混凝土连续刚构桥收缩徐变效应研究[J]. 公路交通科技(应用技术版), 2019, 15(9): 174-176. HU Zhili. Study on Shrinkage and Creep Effect of a Prestressed Concrete Continuous Rigid Frame Bridge [J]. Journal of Highway and Transportation Research and Development (Applied Technology Edition), 2019, 15(9): 174-176. [4] LUCAS J M, BERRED A, LOUIS C. Thermal actions on a steel box girder bridge[J]. Proceedings of the Institution of Civil Engineers - Structures and Buildings, 2003, 156(2): 175-182. [5] 谢阳福, 叶远盛, 桂水荣, 等. 曲率半径对中小跨径连续刚构桥施工阶段力学性能的影响[J]. 中外公路, 2023, 43(1): 99-103. XIE Yangfu, YE Yuansheng, GUI Shuirong, et al. The influence of curvature radius on the mechanical properties of small and medium span continuous rigid frame bridge in construction stage [J]. Journal of China & Foreign Highway, 2023, 43(1): 99-103. [6] 解亚东, 王少辉, 吕志强, 等. 多跨连续刚构桥边中跨同时合龙关键技术[J]. 中外公路, 2021, 41(5): 85-89. XIE Yadong, WANG Shaohui, (LÜ/LV/LU/LYU) Zhiqiang, et al. Key technology of simultaneous closure of side and middle spans of multi-span continuous rigid frame bridge [J]. Journal of China & Foreign Highway, 2021, 41(5): 85-89. [7] 陈诚, 杜磊, 杜晶. 山区连续刚构桥边跨现浇段施工技术[J]. 中外公路, 2021, 41(3): 151-155. CHEN Cheng, DU Lei, DU Jing. Construction technology of side span cast-in-place section of continuous rigid frame bridge in mountainous area [J]. Journal of China & Foreign Highway, 2021, 41(3): 151-155. [8] 帅一师, 周亮. 高速公路服役连续梁桥质量评价及病害修复[J]. 公路工程, 2021, 46(3): 308-313. SHUAI Yishi, ZHOU Liang. Quality evaluation and defect repair of continuous girder existing bridge on expressway[J]. Highway Engineering, 2021, 46(3): 308-313. [9] 王技, 钟海辉. 某跨铁路连续梁桥病害分析与加固技术研究[J]. 公路交通科技(应用技术版), 2018(7): 203-205. WANG Ji, ZHONG Haihui. Research on Disease Analysis and Reinforcement Technology of a Continuous Beam Bridge Crossing Railway [J]. Journal of Highway and Transportation Research and Development (Applied Technology Edition), 2018(7): 203-205. [10] 蒋玮, 周群, 李莘哲. 基于正交试验大跨PC连续刚构桥主梁参数优化研究[J]. 中外公路, 2020, 40(3): 129-133. JIANG Wei, ZHOU Qun, LI (ShenXin)(Zhe). Research on optimization of main girder parameters of long-span PC continuous rigid frame bridge based on orthogonal test [J]. Journal of China & Foreign Highway, 2020, 40(3): 129-133. [11] 肖龙,冯仲仁,陈百奔,等.基于修正反应谱高墩连续刚构桥地震响应研究[J].中外公路,2022,42(1):115‑122. XIAO Long, FENG Zhongren, CHEN Baiben, et al. Seismic response study of high-pier continuous rigid frame bridge based on modified response spectrum [J]. Journal of China and Foreign Highway, 2022, 42(1): 115-122. [12] 刘畅, 朱巍. T形刚构桥基础隔震设计方法研究[J]. 中外公路, 2021, 41(S2): 110-113. LIU Chang, ZHU Wei. Research on base isolation design method of T-shaped rigid frame bridge [J]. Journal of China & Foreign Highway, 2021, 41(S2): 110-113. [13] 刘华全, 杨得海, 蔡成奇, 等. 高墩连续刚构桥车桥耦合振动分析[J]. 中外公路, 2023, 43(2): 133-139. LIU Huaquan, YANG Dehai, CAI Chengqi, et al. Vehicle-bridge coupling vibration analysis of high pier continuous rigid frame bridge [J]. Journal of China & Foreign Highway, 2023, 43(2):133-139. [14] 陈伟利, 梁艳, 任海萍. 大跨度预应力混凝土连续梁桥悬臂施工中温度效应的研究[J]. 混凝土, 2020(7): 153-155,160. CHEN Weili, LIANG Yan, REN Haiping. Study on temperature effect in cantilever construction of long span prestressed concrete continuous girder bridge[J]. Concrete, 2020(7): 153-155,160. [15] 王宫涛. 混凝土连续梁桥温度影响研究[D]. 济南: 济南大学, 2021. WANG Gongtao. Study on temperature influence of concrete continuous beam bridge[D]. Jinan: University of Jinan, 2021. [16] 林志斌. 连续刚构箱形梁腹板早龄期裂缝成因及防裂措施仿真分析[J]. 中外公路, 2022, 42(5): 124-131. LIN Zhibin. Simulation analysis on the causes of early age cracks in the web of continuous rigid frame box beam and its prevention measures[J]. Journal of China & Foreign Highway, 2022, 42(5): 124-131. [17] 杨战勇. 基于温度修正徐变模型的公路大跨连续刚构桥结构状态影响分析[J]. 中外公路, 2021, 41(4): 151-156. YANG Zhanyong. Analysis of structural state influence of highway long-span continuous rigid frame bridge based on temperature correction creep model[J]. Journal of China & Foreign Highway, 2021, 41(4): 151-156. [18] 冷文华. 基于七自由度的大跨预应力曲线刚构桥分析[J]. 中外公路, 2020, 40(2): 107-110. LENG Wenhua. Analysis of long-span prestressed curved rigid frame bridge based on seven degrees of freedom[J]. Journal of China & Foreign Highway, 2020, 40(2): 107-110. [19] 邓宜峰, 吕鹏飞. 连续刚构桥施工控制中的混凝土收缩徐变计算分析[J]. 低温建筑技术, 2018, 40(3): 57-60. DENG Yifeng, (LÜ/LV/LU/LYU) Pengfei. Calculation and comparative analysis of concrete shrinkage and creep model for longspan continuous rigid frame bridge[J]. Low Temperature Architecture Technology, 2018, 40(3): 57-60. [20] 李宁. 基于有限元的预应力混凝土桥梁徐变效应研究[J]. 公路工程, 2017, 42(3): 58-63. LI Ning. Research on shrinkage-creep analysis for prestressed concrete bridges of finite element analysis method[J]. Highway Engineering, 2017, 42(3): 58-63. [21] 朱鹏飞, 李睿, 李华, 等. 大跨度连续刚构桥跨中下挠影响因素研究[J]. 低温建筑技术, 2017, 39(1): 53-55. ZHU Pengfei, LI Rui, LI Hua, et al. Study on the influencing factors for the deflection in the midspan of the long-span continuous rigid frame bridge[J]. Low Temperature Architecture Technology, 2017, 39(1): 53-55. [22] 石磊. 预应力混凝土连续刚构桥上部结构分析[J]. 四川建筑, 2020, 40(2): 190-191,194. SHI Lei. Superstructure analysis of prestressed concrete continuous rigid frame bridge[J]. Sichuan Architecture, 2020, 40(2): 190-191,194. [23] 中交公路规划设计院. 公路桥涵设计通用规范: JTG D60—2015[S]. 北京: 人民交通出版社, 2015. CCCC Highway Consultants Co., Ltd .General Specifications for Design of Highway Bridges and Culverts: JTG D60—2015[S]. Beijing: China Communications Press, 2015. [24] 中交公路规划设计院. 公路桥梁抗风设计规范: JTG/T 3360-01—2018[S]. 北京: 人民交通出版社, 2018. CCCC Highway Consultants Co., Ltd .Wind-resistant Design Specification for Highway Bridges: JTG/T 3360-01—2018[S]. Beijing: China Communications Press, 2018.