•  
  •  
 

Abstract

To study the optimization of cable force on temporary piers during pushing construction of PC box girders, this paper took the continuous box girders of cross-railway pushing construction in Hunan as the research background, and built a finite element model for structural simulation analysis. Based on BP neural networks-genetic algorithm (GA), a method for optimizing cable force on temporary piers during the pushing construction of main girders was proposed. Meanwhile, by employing Matlab programming and finite element software, the optimization of cable force on temporary piers of PC pushing box girders was studied. The results show that after optimization, the maximum horizontal displacement at the top of each temporary pier is significantly reduced, with a maximum decrease of 35.0%. The maximum stress at the bottom of each pier also notably decreases and is distributed more evenly, with a maximum stress reduction of 37%. After optimization, the structural stress safety is effectively improved, which also verifies the effective application of BP neural network-GA in the optimization of cable force on temporary piers.

Publication Date

1-18-2024

DOI

10.14048/j.issn.1671-2579.2023.06.037

First Page

234

Last Page

239

Submission Date

March 2025

Reference

[1] 左雁, 彭云涌, 万小龙. 场地受限条件简支钢箱梁不等跨顶推对策及受力分析[J]. 中外公路, 2021, 41(6): 137-140. ZUO Yan, PENG Yunyong, WAN Xiaolong. Countermeasure and force analysis of unequal span increment launching construction with simply supported steel box girderon restricted site[J]. Journal of China & Foreign Highway, 2021, 41(6): 137-140. [2] 孙波, 蒋鑫. PC箱梁顶推施工体外预应力加固优化研究[J]. 公路工程, 2020, 45(4): 152-157. SUN Bo, JIANG Xin. Research on external prestressing reinforcement optimization of PC box girder jacking construction[J]. Highway Engineering, 2020, 45(4): 152-157. [3] 陈双庆, 谭光耀. 单点顶推施工支撑墩受力分析及优化研究[J]. 湖南交通科技, 2015, 41(3): 92-95. CHEN Shuangqing, TAN Guangyao. Force analysis and optimization research of single point incremental launching construction support pier [J]. Hunan Communication Science and Technology, 2015, 41(3): 92-95. [4] 巫建晖, 涂永生, 杜嘉骅. 连续钢梁顶推过程中临时墩受力分析[J]. 公路与汽运, 2012(4): 205-208. WU Jianhui, TU Yongsheng, DU Jiahua. Stress analysis of temporary pier in the process of continuous steel beam jacking [J]. Highways & Automotive Applications, 2012(4): 205-208. [5] 郝晋新. 大跨度连续钢系杆拱桥顶推施工临时结构优化设计[J]. 水利与建筑工程学报, 2020, 18(1): 163-168,204. HAO Jinxin. Optimum design of temporary structures during incremental launching construction of long-span continuous steel arch bridge[J]. Journal of Water Resources and Architectural Engineering, 2020, 18(1): 163-168,204. [6] 黄绍结, 李莘哲, 陈耀章. 连续钢梁桥顶推过程临时墩受力研究及改善措施[J]. 公路与汽运, 2016(4): 198-200,201. HUANG Shaojie, LI (ShenXin)(Zhe), CHEN Yaozhang. Study on the force of temporary pier during jacking process of continuous steel girder bridge and improvement measures [J]. Highways & Automotive Applications, 2016(4): 198-200,201. [7] 张宏武, 柯红军, 陈卓异, 等. 不调整临时墩顶标高的双向纵坡竖曲线梁顶推方案研究及实施[J]. 中外公路, 2023, 43(4): 118-123. ZHANG Hongwu, KE Hongjun, CHEN Zhuoyi, et al. Study and implementation of jacking scheme of vertical curve beam with two-way longitudinal slope without adjusting temporary pier top elevation[J]. Journal of China & Foreign Highway, 2023, 43(4): 118-123. [8] 陈骁.基于神经网络和遗传算法结合的斜拉桥索力优化研究和施工控制[D].武汉:武汉理工大学,2013. CHEN Xiao. Research on cable force optimization and construction control of cable-stayed bridges based on the combination of neural networks and genetic algorithms [D]. Wuhan: Wuhan University of Technology, 2013. [9] 陈志军, 刘洋, 杨立飞, 等. 基于粒子群优化算法的独塔斜拉桥成桥索力优化[J]. 桥梁建设, 2016, 46(3): 40-44. CHEN Zhijun, LIU Yang, YANG Lifei, et al. Optimization of stay cable tension of completed bridge of single-pylon cable-stayed bridge based on particle swarm optimization algorithm[J]. Bridge Construction, 2016, 46(3): 40-44. [10] 朱敏, 刘荣桂, 谢桂华, 等. 基于多种群遗传算法的大跨度斜拉桥索力优化[J]. 世界桥梁, 2016, 44(3): 38-42. ZHU Min, LIU Ronggui, XIE Guihua, et al. Cable force optimization for long-span cable-stayed bridge based on multi-population genetic algorithm[J]. World Bridges, 2016, 44(3): 38-42. [11] 张玉平, 刘雪松, 李传习. 基于MOPSO算法的斜拉桥索力优化分析[J]. 土木与环境工程学报(中英文), 2020, 42(2): 107-114. ZHANG Yuping, LIU Xuesong, LI Chuanxi. Optimization of cable tension of cable-stayed bridges based on multi-objective particle swarm optimization algorithm[J]. Journal of Civil and Environmental Engineering, 2020, 42(2): 107-114. [12] 邓红雷, 唐崇旺, 刘刚, 等. 基于GA-BP神经网络技术的雷击跳闸实时预警[J]. 电瓷避雷器, 2021(1): 38-44,50. DENG Honglei, TANG Chongwang, LIU Gang, et al. Lightning trip warning based on GA-BP neural network technology[J]. Insulators and Surge Arresters, 2021(1): 38-44,50. [13] 邬沛, 李玉顺, 许达, 等. 基于遗传算法的钢-竹组合工字形梁截面优化设计[J]. 建筑结构学报, 2020, 41(1): 149-155. WU Pei, LI Yushun, XU Da, et al. Multi-objective optimal section design of Ⅰ-shaped section steel-bamboo composite beam using genetic algorithm[J]. Journal of Building Structures, 2020, 41(1): 149-155. [14] 王彪龙, 孟凡利, 曾超, 等. 基于自然选择策略的PSO-BP神经网络的滑坡可靠性评价方法[J]. 中外公路, 2019, 39(3): 1-9. WANG Biaolong, MENG Fanli, ZENG Chao, et al. Landslide reliability evaluation method of PSO-BP neural network based on natural selection strategy [J]. Journal of China & Foreign Highway, 2019, 39(3): 1-9. [15] 冯阳飞. 基于遗传算法的道路平面线形组合设计参数优化[J]. 中外公路, 2020, 40(6): 1-6. FENG Yangfei. Parameter optimization of road plane alignment combination design based on genetic algorithm [J]. Journal of China & Foreign Highway, 2020, 40(6): 1-6.

Share

COinS