Abstract
To further enhance the servic e pe rformance of bridges and prolong structural service life,it is of critical importance to effectively detect the prestress of structural steel strands in bridges.Conventional detection methods have limitations in practical engineering applications,showing substantial variabilities in test results.The X-ray diffraction (XRD ) method,based on the microscopic scale analysis of metallic materials,derives macroscopic stress distribution through lattice spacing variations,demonstrating theoretical clarity and testing stability.This study pioneered the application of XRD in the field of effective bridge prestress detection.Comparative laboratory tension tests were conducted to investigate surface treatment process optimization and correct effective stress.The results demonstrate that the XRD method exhibits remarkable stability in prestress detection,with advantages including diverse application scenarios,low result variabilities,and high detection accuracy.Optimal surface treatment is achieved through grinding with hard abrasive wheels in combination with two-minute electrolysis in a 15 V lead-acid solution.Both linear and exponential correction formulas for effective stress grading are proposed.The research outcomes provide references for implementing XRD technology in bridge prestress detection.
Publication Date
4-10-2025
DOI
10.14048/j.issn.1671-2579.2025.02.022
First Page
194
Last Page
203
Submission Date
April 2025
Recommended Citation
Liang, ZHANG; X udong, ZHOU; Yanbing, LI; Yi, LI; Pengfei, LI; and Xu, HAN
(2025)
"Test and Correction of Effective Prestress in Bridges Based on X-Ray Diffraction,"
Journal of China & Foreign Highway: Vol. 45:
Iss.
2, Article 22.
DOI: 10.14048/j.issn.1671-2579.2025.02.022
Available at:
https://zwgl1980.csust.edu.cn/journal/vol45/iss2/22
Reference
[1]卢发亮.预应力混凝土箱梁体外索应力损失监测研究[J].中外公路,2021,41(2):115-119.LU Faliang.Research on stress loss monitoring of external cables in prestressed concrete box girders [J].Journal of China & Foreign Highway,2021,41(2):115-119.
[2]杜永军,王正.反拉法锚下预应力检测技术研究 [J].交通建设与管理,2022 (6):164-166.DU Yongjun,WANG Zheng.Research on prestress detection technology under reverse tension anchor [J].Transport Construction & Management,2022 (6):164-166.
[3]宁怡豪.考虑夹片影响的反拉法锚下有效预应力检测技术研究 [J].西部交通科技,2024 (10):1-3,94.NING Yihao.Research on detection technology of effective prestress under reverse tension anchor considering the influence of clip [J].Western China Communications Science & Technology,2024 (10):1-3,94.
[4]吴益林,唐波,高科.基于反拉法的锚下有效预应力检测系统校准技术研究 [J].广东公路交通,2022,48(2):44-48.WU Yilin,TANG Bo,GAO Ke.Research on calibration technology of effective prestressing detection system under anchor by back-tension method [J].Guangdong Highway Communications,2022,48(2):44-48.
[5]尚仁杰,曾滨,荣华,等.应力释放法检测混凝土应力的标准化方法研究 [J].工业建筑,2022,52(11):151-156.SHANG Renjie,ZENG Bin,RONG Hua,et al.Research on standardized method of stress release method for measuring the stress of concrete [J].Industrial Construction,2022,52(11):151-156.
[6]金鹏,李喜德.残余应力分析方法比 较:X射线衍射法与应力释放法 [J].实验力学,2017,32(5):645-651.JIN Peng,LI Xide.Comparison of residual stress analysis methods:X-ray diffraction method vs stress release method[J].Journal of Experimental Mechanics,2017,32(5):645-651.
[7]李思霖.预应力混凝土桥梁检测与加固技术研究 [J].交通世界,2021 (26):123-124.LI Silin.Research on detection and reinforcement technology of prestressed concrete bridge [J].TranspoWorld,2021 (26):123-124.
[8]ALOISIO A.Aspects of vibration-based methods for the prestressing estimate in concrete beams with internal bonded or unbonded tendons [J].Infrastructures,2021,6(6):83.
[9]况中华.基于振动法的拉索索力测试研究 [J].建筑施工,2021,43(7):1401 -1404.KUANG Zhonghua.Research on cable force measurement based on vibration method [J].Building Construction,2021,43(7):1401 -1404.
[10]CHAKI S,BOURSE G.Stress level measurement in prestressed steel strands using acoustoelastic effect [J].Experimental Mechanics,2009,49(5):673-681.
[11]FARHADI S,CORRADO M,BORLA O,et al.Prestressing wire breakage monitoring using sound event detection [J].Computer-Aided Civil and Infrastructure Engineering,2024,39(2):186-202.
[12]XIA J F,ZHANG S H,LIAO L,et al.Working stress measurement of prestressed rebars using the magnetic resonance method [J].Buildings,2023,13(6):1416.
[13]李炎,蒋云锋,赖苑林,等.变宽连续梁桥腹板预应力锚头混凝土破裂影响 [J].工程建设,2022,54(9):48-53.LI Yan,JIANG Yunfeng,LAI Yuanlin,et al.Influence of concrete rupture on web prestressed anchor head of widened continuous girder bridge [J].Engineering Construction,2022,54(9):48-53.
[14]YE Y S,WU W Q,WANG Q S,et al.Experimental study on grouting quality detection in prestressed pipeline based on scattered wave method [J].Buildings,2024,14(5):1402.
[15]朱建朝,董昊,顾俊钢,等.预应力混凝土梁锚下张拉力整孔检测技术研究 [J/OL ].中外公路,1-10[2024 -05-18].https://kns.cnki.net/kcms/detail/ 43.1363.U.20240518.2122.004.html.ZHU Jianzhao,DONG Hao,GU Jungang,et al.Study on whole hole detection technology of prestressed concrete beam anchor under tension [J/OL ].Journal of China & Foreign Highway,1-10[2024 -05-18].https://kns.cnki.net/kcms/detail/ 43.1363.U.20240518.2122.004.html.
[16]NIU N N,ZHAO Y S,LIU Z F,et al.Research on ultrasonic testing method for tangential contact stress based on equivalent medium theory [J].Ultrasonics Sonochemistry,2025,112:107150.
[17]张志国,吴冀桥,张彩亮,等.基于盲孔法的钢绞线有效预应力检测识别技术 [J].铁道学报,2023,45(8):166-175.ZHANG Zhiguo,WU Jiqiao,ZHANG Cailiang,et al.Identification of effective prestress of steel strand based on blind-hole method [J].Journal of the China Railway Society,2023,45(8):166-175.
[18]MYERS H P.Introductory solid state physics [M].Boca Raton:CRC Press,1997.
[19]国家质量监督检验检疫总局,中国国家标准化管理委员会.无损检测 X射线应力测定方法:GB/T 7704—2017[S].北京:中国标准出版社,2017.General Administration of Quality Supervision,Inspection and Quarantine of the People ’s Republic of China,Standardization Administration of the People ’s Republic of China.Non-destructive testing:Practice for residual stress measurement by X-ray:GB/T 7704—2017 [S].Beijing:Standards Press of China,2017.
[20]SAC/TC 183.金属试样的电解抛光方法:YB/T 4377—2014 [S].北京:SAC/TC 183,2014.SAC/TC 183.Electrolytic polishing method of metallic specimens:YB/T 4377—2014 [S].Beijing:SAC/TC 183,2014.
[21]国家卫生健康委员会.低能射线装置放射防护标准:GBZ 115—2023 [S].北京:国家卫生健康委员会,2023.National Health Commission (NHC ).Standard for radiological protection in low-energy radiation generating devices:GBZ 115—2023 [S].Beijing:National Health Commission (NHC ),2023.
[22]呼梦娟,马逸飞,涂启贵,等.电解液密度对起动铅酸蓄电池性能的影响 [J].蓄电池,2023,60(3):117-120.HU Mengjuan,MA Yifei,TU Qigui,et al.Effect of the electrolyte density on lead-acid starter batteries [J].Chinese LABAT Man,2023,60(3):117-120.