•  
  •  
 

Abstract

In cold regions,road service performance is influenced by various nonlinear dynamic factors under complex hydrothermal environments and freeze-thaw cycles.Traditional empirical and mechanical models exhibit significant limitations in comprehensively considering the impacts of complex environments and conducting quantitative analyses.This study proposed a method to predict and assess the service performance of constructed roads in cold regions.The method integrated deep neural networks with uncertainty quantification theory,addressing the inadequacies of existing models in adapting to complex environments and analyzing multiple influencing factors.By utilizing data from Montana road sections in the LTPP database,the study employed deep neural networks to predict the international roughness index (IIRI).The Morris one-at-a-time method was used to screen key influencing factors,and sensitivity analysis was conducted using the Sobol index to identify the primary factors affecting road service performance.The results indicate that road age,traffic volume,and freezing index are critical factors influencing road service performance,followed by temperature and wind speed,while annual precipitation,solar radiation,and humidity have relatively minor impacts.These findings highlight the significance of screening key factors and conducting sensitivity analyses to discern the primary and secondary factors influencing road service performance in the complex environments of cold regions.The proposed research framework effectively addresses the limitations of traditional evaluation models in adapting to complex environments and analyzing influencing factors comprehensively.It provides theoretical support and practical guidance for accurate prediction and scientific evaluation of road service performance in cold regions.

Publication Date

2-22-2025

DOI

10.14048/j.issn.1671-2579.2025.01.007

First Page

60

Last Page

66

Submission Date

March 2025

Reference

[1]齐永亮.冻土融化背景下东北公路设计与施工策略探讨[C]//南宁:第三届工程技术管理与数字化转型学术交流会论文集,2024.QI Yongliang.Discussion on design and construction strategies of Northeast Highways under the background of permafrost melting [C]//Nanning:The 3rd Academic Exchange Conference on Engineering Technology Management and Digital Transformation,2024.
[2]高峰,曾宪璋,钟闻华,等.多年冻土区道路工程病害处治技术研究进展与展望 [J].中外公路,2024,44(5):1-16.GAO Feng,ZENG Xianzhang,ZHONG Wenhua,et al.Progress and prospects of road engineering disease treatment technology in permafrost regions [J].Journal of China & Foreign Highway,2024,44(5):1-16.
[3]周立.贵阳市干线公路沥青路面使用性能评价预测及预防养护措施优选 [D].重庆:重庆交通大学,2022.ZHOU Li.Evaluation and prediction of asphalt pavement performance and optimization of preventive maintenance measures for main highway in Guiyang [D].Chongqing:Chongqing Jiaotong University,2022.
[4]赵桦.库尔勒至库尔楚高速公路路面使用性能评价及养护决策研究 [D].石河子:石河子大学,2022.ZHAO Hua.Study on pavement performance evaluation and maintenance decision of Korla-Korchu Expressway[D].Shihezi:Shihezi University,2022.
[5]周岚.高速公路沥青路面使用性能评价及预测研究 [D].南京:东南大学,2015.ZHOU Lan.Research of performance evaluation and prediction method of asphalt pavements for highway [D].Nanjing:Southeast University,2015.
[6]袁祖峰.高速公路沥青路面使用性能预测及预防性养护时机的研究 [D].合肥:安徽建筑大学,2019. YUAN Zufeng.Study on performance prediction method and preventivemaintenance time of asphalt pavements for highway [D].Hefei:Anhui Jianzhu University,2019.
[7]王宇强,王亚欣,李强.高速公路路面使用性能预测模型研究综述 [C]//重庆:中国公路学会养护与管理分会第十三届学术年会论文集,2024.WANG Yuqiang,WANG Yaxin,LI Qiang.Review of research on pavement performance prediction models for expressways [C]//Chongqing:The 13th Academic Annual Meeting of the Maintenance and Management Branch of the China Highway Society,2024:27-35.
[8]杨雨晴,胡庆国.永州市高速公路沥青路面使用性能预测研究 [J].公路与汽运,2021 (6):168-171,176.YANG Yuqing,HU Qingguo.Study on prediction of asphalt pavement performance of Yongzhou expressway[J].Highways & Automotive Applications,2021 (6):168-171,176.
[9]韦璐,张雪冰.德国力学经验法沥青路面设计 [J].中外公路,2010,30(2):72-74.WEI Lu,ZHANG Xuebing.German mechanistic-empirical method for asphalt pavement design [J].Journal of China & Foreign Highway,2010,30(2):72-74.
[10]OLOWOSULU A T,KAURA J M,ADEKE P T,et al.Development of framework for performance prediction of flexible road pavement in Nigeria using Fuzzy logic theory [J].International Journal of Pavement Engineering,2021,23(11):1-10.
[11] 李海莲,林梦凯,王起才.高速公路沥青路面使用性能模糊区间评价方法研究 [J].重庆交通大学学报 (自然科学版),2020,39(9):80-87.LI Hailian,LIN Mengkai,WANG Qicai.Freeway asphalt pavement performance based on fuzzy interval evaluation method [J].Journal of Chongqing Jiaotong University (Natural Science ),2020,39(9):80-87.
[12]YAMANY M S,ABRAHAM D M,LABI S.Comparative analysis of Markovian methodologies for modeling infrastructure system performance [J].Journal of Infrastructure Systems,2021,27(2):1-13.
[13]ABAZA K A.Optimal novel approach for estimating the pavement transition probabilities used in Markovian prediction models [J].International Journal of Pavement Engineering,2022,23(8):2809 -2820.
[14]于晓贺,邱怀中,罗蓉,等.基于修正灰色预测模型的沥青路面使用性能预测 [J].武汉理工大学学报 (交通科学与工程版 ),2021,45(1):59-63.YU Xiaohe,QIU Huaizhong,LUO Rong,et al.Prediction of asphalt pavement performance based on modified grey prediction model [J].Journal of Wuhan University of Technology (Transportation Science & Engineering ),2021,45(1):59-63.
[15]卜德凡.基于 GM-ES组合方法的高速公路沥青路面使用性能预测的研究 [D].呼和浩特:内蒙古农业大学,2022.BU Defan.Research on asphalt pavement performance prediction of expressways based on the GM-ES combined method [D].Hohhot:Inner Mongolia Agricultural University,2022.
[16]张海,孙浩宇,王宇强,等.基于 GM-ANN 模型的路面性能预测方法 [J].公路,2022,67(6):364-368.ZHANG Hai,SUN Haoyu,WANG Yuqiang,et al.Pavement performance prediction method based on the GM-ANN model [J].Highway,2022,67(6):364-368.
[17]PEDRO M,MARIA D L A,EDUARDO F,et al.Machine learning approach for pavement performance prediction [J].International Journal of Pavement Engineering,2021,22(3):341-54.
[18]YOUNOS M A E S,RAGAA A E H,et al.Multi-input performance prediction models for flexible pavements using LTPP database [J].Innovative Infrastructure Solutions,2020,5(1):1-11.
[19]张丽娟,杨源,梅诚,等.基于 ARIMA 和SVM模型的沥青路面使用性能预测比较 [J].中外公路,2022,42(2):52-56.ZHANG Lijuan,YANG Yuan,MEI Cheng,et al.Comparing predictions of asphalt pavement performance between ARIMA and SVM models [J].Journal of China & Foreign Highway,2022,42(2):52-56.
[20]陈利.基于 LTPP的沥青路面平整度预测方法研究 [D].西安:长安大学,2018.CHEN Li.Study on Asphalt pavement roughness prediction method based on LTPP [D].Xi’an:Chang’an University,2018.
[21]尚千里,田波,李思李,等.沥青路面车辙 LSTM-BPNN 特征融合预测模型研究 [J].中外公路,2021,41(4):70-75.SHANG Qianli,TIAN Bo,LI Sili,et al.Research on prediction model of LSTM-BPNN feature fusion for asphalt pavement rutting [J].Journal of China & Foreign Highway,2021,41(4):70-75.

Share

COinS