Abstract
The bound water in clay has a significant influence on the engineering properties of clay. The influence of bound water and its properties on the mechanical properties of soil mass is the focus of the research on special soil engineering problems. To further deeply study the properties of bound water in the soil and its influence on the mechanical properties of soil mass, this paper reviewed the concept, classification, properties of bound water in clay and the testing methods of bound water content. Comprehensive analysis indicates that due to factors such as the different hydration mechanisms of bound water in different clays and insufficient exploration of the classification of bound water forms, there is no unified classification and definition method for bound water yet. One of the important indicators of bound water is the bound water density. However, the bound water density is not fixed, and the method for determining its accurate value awaits further research. The current methods for determining bound water have certain limitations. By comparing various testing methods, it is believed that the bound water content measured by the isothermal adsorption method and thermal analysis method is relatively accurate. It is recommended to use multiple measurement methods in combination to determine the bound water content to obtain more precise and rigorous results.
Publication Date
6-18-2022
DOI
10.14048/j.issn.1671-2579.2022.03.001
First Page
1
Last Page
10
Submission Date
May 2025
Recommended Citation
Rui, Zhang; Xu ning, Shen; Xiangzhan, Yang; Yupeng, Xiao; Shijie, Zhou; and Xianyang, Cheng
(2022)
"Review on Classification and Testing Methods of Clay-Bound Water,"
Journal of China & Foreign Highway: Vol. 42:
Iss.
3, Article 1.
DOI: 10.14048/j.issn.1671-2579.2022.03.001
Available at:
https://zwgl1980.csust.edu.cn/journal/vol42/iss3/1
Reference
[1] 邵玉娴, 施斌, 刘春, 等. 黏性土水理性质温度效应研究[J]. 岩土工程学报, 2011, 33(10): 1576-1582. SHAO Yuxian, SHI Bin, LIU Chun, et al. Temperature effect on hydro-physical properties of clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1576-1582. [2] 张锐, 肖宇鹏, 刘闯, 等. 考虑吸附结合水影响的高液限土路基压实度控制标准[J]. 中国公路学报, 2020, 33(1): 32-40, 50. ZHANG Rui, XIAO Yupeng, LIU Chuang, et al. Control standards for degree of compaction of high liquid limit soil subgrade considering effects of adsorbed bound water[J]. China Journal of Highway and Transport, 2020, 33(1): 32-40, 50. [3] ZHAO C Y, LENG W M, ZHENG G Y. Calculation and analysis for the time-dependency of settlement of the single-driven pile in double-layered soft clay[J].Applied Clay Science,2013,79:8-12. [4] 杨光华, 李俊, 贾恺, 等. 改进的地基沉降计算的工程方法[J]. 岩石力学与工程学报, 2017, 36(S2): 4229-4234. YANG Guanghua, LI Jun, JIA Kai, et al. Improved settlement calculation method for engineering practice[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S2): 4229-4234. [5] CUIZD,TANG Y Q. Land subsidence and pore structure of soils caused by the high-rise building group through centrifuge model test[J].Engineering Geology, 2010, 113(1-4): 44-52. [6] 王平全. 粘土表面结合水定量分析及水合机制研究[D]. 成都: 西南石油学院, 2001. WANG Pingquan. Quantitative analysis of bound water on clay surface and study on hydration mechanism[D]. Chengdu: Southwest Petroleum Institute, 2001. [7] 《中国公路学报》编辑部. 中国路基工程学术研究综述·2021[J]. 中国公路学报, 2021, 34(3): 1-49. Editorial Department of China Journal of Highway and Transport. Review on China’s subgrade engineering Research·2021[J]. China Journal of Highway and Transport, 2021, 34(3): 1-49. [8] 肖桂元, 朱杰茹, 徐光黎, 等. NaCl溶液引起红黏土界限含水率变化的试验研究[J]. 中南大学学报(自然科学版), 2021, 52(9): 3314-3321. XIAO Guiyuan, ZHU Jieru, XU Guangli, et al. Experimental study on change of limit water content of red clay caused by NaCl solution[J]. Journal of Central South University (Science and Technology), 2021, 52(9): 3314-3321. [9] 袁聚云, 钱建固, 张宏鸣, 等. 土质学与土力学[M]. 4版. 北京: 人民交通出版社, 2009. YUAN Juyun, QIAN Jiangu, ZHANG Hongming, et al. Soil science and soil mechanics[M]. 4th ed. Beijing: China Communications Press, 2009. [10] MITCHELL J K,SOGA A K. Fundamentals of Soil Behavior[M].Third Edition. New Jersey: John Wiley & Sons,2005. [11] BOLT G H. Analysis of the validity of the Gouy-Chapman theory of the electric double layer[J]. Journal of Colloid Science, 1955, 10(2): 206-218. [12] 张芹, 颜荣涛, 韦昌富, 等. 孔隙溶液对粉质黏土界限含水率的影响[J]. 岩土力学, 2015, 36(S1): 558-562, 608. ZHANG Qin, YAN Rongtao, WEI Changfu, et al. Influence of pore solution on limit moisture content of silty clay[J]. Rock and Soil Mechanics, 2015, 36(S1): 558-562, 608. [13] 李善梅, 刘之葵, 蒙剑坪. pH值对桂林红黏土界限含水率的影响及其机理分析[J]. 岩土工程学报, 2017, 39(10): 1814-1822. LI Shanmei, LIU Zhikui, MENG Jianping. Effect of pH value on boundary water content of red clay in Guilin and its mechanism[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(10): 1814-1822. [14] 陈永贵, 雷宏楠, 贺勇, 等. 膨润土-红黏土混合土对NaCl溶液的渗透试验研究[J]. 中南大学学报(自然科学版), 2018, 49(4): 910-915. CHEN Yonggui, LEI Hongnan, HE Yong, et al. Experimental study of permeability of bentonite-laterite mixtures for salt solutions[J]. Journal of Central South University (Science and Technology), 2018, 49(4): 910-915. [15] 于海浩, 孙德安, 韦昌富, 等. 氯化钠溶液饱和不同初始含水率膨润土的膨胀特性[J]. 岩土工程学报, 2019, 41(3): 595-600. YU Haihao, SUN Dean, WEI Changfu, et al. Swelling characteristics of bentonite with different initial water contents saturated by NaCl solution[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 595-600. [16] 罗豪良, 滕继东, 张升, 等. 冻土未冻水含量与电导率的关系研究[J]. 岩石力学与工程学报, 2021, 40(5): 1068-1079. LUO Haoliang, TENG Jidong, ZHANG Sheng, et al. Study on the relationship between unfrozen water content and electrical conductivity in frozen soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(5): 1068-1079. [17] REVIL A. Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 mHz–1GHz[J]. Water Resources Research, 2013, 49(1): 306-327. [18] 靳潇, 杨文, 孟宪红, 等. 基于双电层模型冻土中未冻水含量理论推演及应用[J]. 岩土力学, 2019, 40(4): 1449-1456. JIN Xiao, YANG Wen, MENG Xianhong, et al. Deduction and application of unfrozen water content in soil based on electrical double-layer theory[J]. Rock and Soil Mechanics, 2019, 40(4): 1449-1456. [19] ZHANG S Q, PEI H F. Determining the bound water content of montmorillonite from molecular simulations[J]. Engineering Geology, 2021, 294: 106353. [20] ZHANG C,LU N. What is the range of soil water density critical reviews with a unified model[J].Reviews of Geophysics, 2018, 56(3): 532-562. [21] 邵玉娴. 粘性土工程性质的温度效应试验研究[D]. 南京: 南京大学, 2011. Shao Yuxian. Experimental Study on Temperature Effects on Engineering Properties of Cohesive Soils [D]. Nanjing: Nanjing University, 2011. [22] 刘清秉, 项伟, 崔德山. 离子土固化剂对膨胀土结合水影响机制研究[J]. 岩土工程学报, 2012, 34(10): 1887-1895. LIU Qingbing, XIANG Wei, CUI Deshan. Effect of ionic soil stabilizer on bound water of expansive soils[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1887-1895. [23] 李邦武, 吴梦丽, 刘闯, 等. 吸附结合水对高液限土固结特性的影响[J]. 公路与汽运, 2020(6): 69-72, 75. LI Bangwu, WU Mengli, LIU Chuang, et al. Highways & Automotive Applications, 2020(6): 69-72, 75. [24] KHORSHIDI M, LU N, KHORSHIDI A. Intrinsic relationship between matric potential and cation hydration [J].Vadose Zone Journal, 2016, 15(11): 1. [25] LU N. Generalized soil water retention equation for adsorption and capillarity[J]. Journal of Geotechnical & Geoenvironmental Engineering,2016,142(10):04016051(1-13). [26] LU N, ZHANG C. Soil sorptive potential: concept, theory, and verification[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 145(4):04019006. [27] ZHANG C, LU N. Soil sorptive potential: Its determination and predicting soil water density[J].Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(1): 04019118. [28] 杨岁桥, 王宁宁, 张虎. 高温冻土的蠕变特性试验及蠕变模型研究[J]. 冰川冻土, 2020, 42(3): 834-842. YANG Suiqiao, WANG Ningning, ZHANG Hu. Study on creep test and creep model of warm frozen soil[J]. Journal of Glaciology and Geocryology, 2020, 42(3): 834-842. [29] 魏天宇, 胡大伟, 周辉, 等. 实时高温及加卸载作用下非饱和压实膨润土气渗与变形特性研究[J]. 岩石力学与工程学报, 2022, 41(3): 587-595. WEI Tianyu, HU Dawei, ZHOU Hui, et al. Influences of real-time temperature and stress cycle on gas permeability and deformation characteristics of unsaturated compacted bentonite[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(3): 587-595. [30] KELISHADI H, MOSADDEGHI M R, AYOUBI S, et al. Effect of temperature on soil structural stability as characterized by high energy moisture characteristic method[J]. Catena, 2018, 170: 290-304. [31] MIRONOV V L, KARAVAYSKIY A Y, LUKIN Y I, et al. Joint studies of water phase transitions in Na-bentonite clay by calorimetric and dielectric methods[J]. Cold Regions Science and Technology, 2018, 153: 172-180. [32] YAO C Q, WEI C F, MA T T, et al. Experimental investigation on the influence of thermochemical effect on the pore–water status in expansive soil[J]. International Journal of Geomechanics, 2021, 21(6): 04021080. [33] LOGANATHAN N, YAZAYDIN A O, BOWERS G M, et al. Molecular dynamics study of CO2 and H2O intercalation in smectite clays: effect of temperature and pressure on interlayer structure and dynamics in hectorite[J]. The Journal of Physical Chemistry C, 2017, 121(44): 24527-24540. [34] YANG Y F, QIAO R, WANG Y F, et al. Swelling pressure of montmorillonite with multiple water layers at elevated temperatures and water pressures: a molecular dynamics study[J]. Applied Clay Science, 2021, 201: 105924. [35] HONG W B, MENG J, LI C D, et al. Effects of temperature on structural properties of hydrated montmorillonite: experimental study and molecular dynamics simulation[J]. Advances in Civil Engineering, 2020, 2020(1): 8885215. [36] CAMARA M, XU J F, WANG X P, et al. Molecular dynamics simulation of hydrated Na-montmorillonite with inorganic salts addition at high temperature and high pressure[J]. Applied Clay Science, 2017, 146: 206-215. [37] ZHENG Y, ZAOUI A. Temperature effects on the diffusion of water and monovalent counterions in the hydrated montmorillonite[J]. Physica A: Statistical Mechanics and Its Applications, 2013, 392(23): 5994-6001. [38] 张亚云, 陈勉, 邓亚, 等. 温压条件下蒙脱石水化的分子动力学模拟[J]. 硅酸盐学报, 2018, 46(10): 1489-1498. ZHANG Yayun, CHEN Mian, DENG Ya, et al. Molecular dynamics simulation of temperature and pressure effects on hydration characteristics of montmorillonites[J]. Journal of the Chinese Ceramic Society, 2018, 46(10): 1489-1498. [39] LANGMUIR I. The adsorption of gases on plane surfaces of glass, mica and platinum[J]. Journal of the American Chemical Society, 1918, 40(9): 1361-1403. [40] 王平全. 用等温吸附法确定粘土表面吸附结合水界限[J]. 西南石油学院学报, 2005, 27(6): 57-61+102-103. WANG Pingquan. Determination of bound water boundary on clay surface by isothermal adsorption[J]. Journal of Southwest Petroleum Institute, 2005, 27(6): 57-61+102-103. [41] 吴谦. 软粘土的结合水对其次固结和长期强度的影响及机理研究[D]. 长春: 吉林大学, 2015. WU Qian. Study on the influence of combined water of soft clay on secondary consolidation and long-term strength and its mechanism[D]. Changchun: Jilin University, 2015. [42] LI S, WANG C M, ZHANG X W, et al. Classification and characterization of bound water in marine mucky silty clay[J]. Journal of Soils and Sediments, 2019, 19(5): 2509-2519. [43] 王铁行, 李彦龙, 苏立君. 黄土表面吸附结合水的类型和界限划分[J]. 岩土工程学报, 2014, 36(5): 942-948. WANG (Tie)(HangXing), LI Yanlong, SU Lijun. Types and boundaries of bound water on loess particle surface[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(5): 942-948. [44] 李彦龙. 非饱和黄土结合水特性及水分迁移问题研究[D]. 西安: 西安建筑科技大学, 2015. Li Yanlong. Study on bound water characteristics and moisture migration in unsaturated loess [D]. Xi'an: Xi'an University of Architecture and Technology, 2015. [45] 宋玉品. 黄土中结合水对其物理力学特性影响的研究[D]. 西安: 长安大学, 2018. Song Yupin. Study on the influence of bound water on physical and mechanical properties of loess [D]. Xi'an: Chang'an University, 2018. [46] 陈琼. 黏土吸附结合水动力学模型及机理研究[D]. 武汉: 中国地质大学, 2013. CHEN Qiong. Study on hydrodynamic model and mechanism of clay adsorption combined with water[D]. Wuhan: China University of Geosciences, 2013. [47] 吴凤彩.粘性土的吸附结合水测量和渗流的某些特点 [J].岩土工程学报,1984,6(6):84-93. Wu Fengcai. Measurement of adsorbed bound water in cohesive soils and some characteristics of seepage [J]. Chinese Journal of Geotechnical Engineering, 1984, 6(6): 84-93. [48] 张锐, 吴梦丽, 刘闯, 等. 结合水对高液限土固结压缩特性的试验研究[J]. 长沙理工大学学报(自然科学版), 2019, 16(4): 48-56. ZHANG Rui, WU Mengli, LIU Chuang, et al. Experimental study on consolidation and compression characteristics of high liquid limit soil with combined water[J]. Journal of Changsha University of Science & Technology (Natural Science), 2019, 16(4): 48-56. [49] 张锐, 肖宇鹏, 刘闯. 海南高液限土结合水试验研究[J]. 长沙理工大学学报(自然科学版), 2019, 16(1): 10-16. ZHANG Rui, XIAO Yupeng, LIU Chuang. Experimental study on high liquid limited soil bound water in Hainan[J]. Journal of Changsha University of Science & Technology (Natural Science), 2019, 16(1): 10-16. [50] ZHANG Rui, XIAO Yupeng, WU Mengli, et al. Measurement and engineering application of adsorbed water content in fine-grained soils[J]. Journal of Central South University, 2021, 28(5): 1555-1569. [51] 王平全, 陈地奎. 用热失重法确定水合粘土水分含量及存在形式[J]. 西南石油学院学报, 2006, 28(1): 52-55. WANG Pingquan, CHEN Dikui. The determination of water content and bound water type on hydro-clay surface by thermal-weightlessness[J]. Journal of Southwest Petroleum Institute, 2006, 28(1): 52-55. [52] 谢刚, 邓明毅, 张龙. 黏土结合水的热分析定量研究方法[J]. 钻井液与完井液, 2013, 30(6): 1-4. XIE Gang, DENG Mingyi, ZHANG Long. A study on the influence of electrolytes on clay bound water[J]. Drilling Fluid & Completion Fluid, 2013, 30(6): 1-4. [53] 李亚斌. 黄土及相关黏土矿物吸附结合水的定量研究[D]. 西安: 长安大学, 2018. Li Yabin. Quantitative study on adsorbed bound water in loess and related clay minerals [D]. Xi'an: Chang'an University, 2018. [54] 李文平, 于双忠, 王柏荣, 等. 煤矿区深部粘性土吸附结合水含量测定及其意义[J]. 水文地质工程地质, 1995, 22(3): 31-34. LI Wenping, YU Shuangzhong, WANG BaiRong, et al. Determination of adsorbed bound water content in deep cohesive soil in coal mining area and its significance[J]. Hydrogeology & Engineering Geology, 1995, 22(3): 31-34. [55] 袁建滨. 粘土中结合水特性及其测试方法研究[D]. 广州: 华南理工大学, 2012. YUAN Jianbin. Study on characteristics of bound water in clay and its testing method[D]. Guangzhou: South China University of Technology, 2012. [56] ROBINSON D A, COOPER J D,GARDNER C. Modelling the relative permittivity of soils using soil hygroscopic water content[J].Journal of Hydrology, 2002, 255(1-4): 39-49. [57] 王旭东, 肖树芳, 房后国. 天津海积软土结合水固结分析[J]. 工程地质学报, 2002, 10(4): 390-394. WANG Xudong, XIAO Shufang, FANG Houguo. Analysis on the bound water consolidation of marine soft soil in Tianjin[J]. Journal of Engineering Geology, 2002, 10(4): 390-394. [58] 何俊,肖树芳.结合水对海积软土流变性质的影响[J].吉林大学学报(地科版), 2003, 33(2): 204-207. [59] 王平全, 谭敬明, 程地奎. 用红外光谱法确定粘土表面结合水界限[J]. 西南石油学院学报, 2001, 23(2): 53-55. WANG Pingquan, TAN Jingming, CHENG Dikui. The determination of bound water boundary on clay surface by infrared spectrum[J]. Journal of Southwest Petroleum Institute, 2001, 23(2): 53-55. [60] 王平全. 用离子交换法确定粘土表面结合水界限[J]. 西南石油学院学报, 2000, 22(1): 59-61. WANG Pingquan. Determination of the types and boundary line of bound water on clay surface by ion exchange[J]. Journal of Southwest Petroleum Institute, 2000, 22(1): 59-61. [61] BLACK P B, TICE A R. Comparison of soil freezing curve and soil water curve data for Windsor sandy loam[J]. Water Resources Research, 1989, 25(10): 2205-2210. [62] GAO S Q, CHAPMAN W G, HOUSE W. Application of low field NMR T 2 measurements to clathrate hydrates[J]. Journal of Magnetic Resonance, 2009, 197(2): 208-212. [63] BIRD N, PRESTON A R, RANDALL E W, et al. Measurement of the size distribution of water-filled pores at different matric potentials by stray field nuclear magnetic resonance[J].European Journal of Soil Science,2005,56(1):135-143. [64] 田慧会, 韦昌富. 基于核磁共振技术的土体吸附水含量测试与分析[J]. 中国科学: 技术科学, 2014, 44(3): 295-305. TIAN Huihui, WEI Changfu. A NMR-based testing and analysis of adsorbed water content[J]. Scientia Sinica (Technologica), 2014, 44(3): 295-305. [65] 何攀, 许强, 刘佳良, 等. 基于核磁共振与氮吸附技术的黄土含盐量对结合水膜厚度的影响研究[J]. 水文地质工程地质, 2020, 47(5): 142-149. HE Pan, XU Qiang, LIU Jialiang, et al. An experimental study of the influence of loess salinity on combined water film thickness based on NMR and nitrogen adsorption technique[J]. Hydrogeology & Engineering Geology, 2020, 47(5): 142-149. [66] 苏俊霖, 董汶鑫, 冯杰, 等. 黏土表面结合水的低场核磁共振定量研究[J]. 钻井液与完井液, 2018, 35(1): 8-12. SU Junlin, DONG Wenxin, FENG Jie, et al. Quantitative study on surface bound water of clay with low field NMR[J]. Drilling Fluid & Completion Fluid, 2018, 35(1): 8-12. [67] 何攀, 许强, 刘佳良, 等. 基于核磁共振技术的结合水含量对重塑黄土抗剪强度影响试验研究[J]. 山地学报, 2020, 38(4): 571-580. HE Pan, XU Qiang, LIU Jialiang, et al. Experimental study on the effect of combined water content on shear strength of remolded loess based on NMR[J]. Mountain Research, 2020, 38(4): 571-580. [68] 张世民, 孙银锁, 章丽莎, 等. 核磁共振技术在非冻结土体孔隙分析中的应用[J]. 人民长江, 2019, 50(11): 183-188. ZHANG Shimin, SUN Yinsuo, ZHANG Lisha, et al. Application of nuclear magnetic resonance technology in pore analysis of unfrozen soil[J]. Yangtze River, 2019, 50(11): 183-188. [69] 莫燕坤, 刘观仕, 牟智, 等. 黏土中结合水含量测试方法研究进展[J]. 土工基础, 2021, 35(3): 393-399. MO Yankun, LIU Guanshi, MOU Zhi, et al. State of the art review of testing methods of bound water content in clay[J]. Soil Engineering and Foundation, 2021, 35(3): 393-399.