Abstract
Due to the significant variation in alignment, the force of small-radius curved bridges is rather complex. Different connection methods of piers and beams can have a considerable impact on the overall force performance of small-radius curved bridges, which requires careful consideration during the design process. This paper took the two-span small-radius curved cast-in-place box girder bridge of a certain expressway ramp bridge as an example. The finite element model of the bridge was established by using Midas/Civil software, and the static performance of the bridge under the conditions of simply supported piers and beams and consolidated piers and beams was analyzed from three aspects: strength, stiffness, and stability. The results show that under the consolidation condition of piers and beams, the longitudinal and transverse displacements of the pier top and the box girder are smaller, and the stability is higher. However, the bending moment of the piers is larger. Therefore, the reinforcement ratio should also be increased accordingly in the design. Due to the relatively small stiffness of the pier body, the longitudinal and transverse displacements of the first hollow piers are relatively large. The consolidation of piers and beams has a significant influence on the stress of piers and a relatively small influence on the stress of box girders. Based on the analysis of the three aspects of comprehensive stiffness, strength, and stability, the consolidation of piers and beams is more suitable for the connection of piers and beams in small-radius cast-in-place box girder bridges.
Publication Date
6-18-2022
DOI
10.14048/j.issn.1671-2579.2022.03.012
First Page
64
Last Page
69
Submission Date
May 2025
Recommended Citation
Yiguang, Wang and Yuanxun, Zheng
(2022)
"Finite Element Analysis of Mechanical Performance of a Small Radius Cast-in-Place Box Girder Bridge Pier-Beam Connection Method,"
Journal of China & Foreign Highway: Vol. 42:
Iss.
3, Article 12.
DOI: 10.14048/j.issn.1671-2579.2022.03.012
Available at:
https://zwgl1980.csust.edu.cn/journal/vol42/iss3/12
Reference
[1] 李林, 唐国斌, 程坤, 等. 基于长期监测数据的曲线箱梁桥位移研究[J]. 公路工程, 2019, 44(6): 147-150+250. LI Lin, TANG Guobin, CHENG Kun, et al. Long-term deformation of curved box-girder bridge under temperature effect[J]. Highway Engineering, 2019, 44(6): 147-150+250. [2] 孙全胜, 高红帅, 张冬久. 小半径曲线钢箱梁独柱墩匝道桥抗倾覆分析[J]. 中外公路, 2013, 33(5): 114-118. SUN Quansheng, GAO Hongshuai, ZHANG Dongjiu. Anti-overturning analysis of small radius curved steel box girder ramp bridge with single column pier[J]. Journal of China & Foreign Highway, 2013, 33(5): 114-118. [3] 张菊辉, 梁磊, 管仲国. 城市高架匝道桥部分隔震体系地震响应分析[J]. 振动与冲击, 2017, 36(7): 141-148. ZHANG Juhui, LIANG Lei, GUAN Zhongguo. Seismic response analysis of a viaduct ramp bridge with partial vibration isolation[J]. Journal of Vibration and Shock, 2017, 36(7): 141-148. [4] 徐秋红, 李向阳. 全智能控制液压钢模板在深中通道箱梁预制中的应用[J]. 世界桥梁, 2019, 47(6): 36-40. XU Qiuhong, LI Xiangyang. Application of fully intelligent-controlled hydraulic steel formwork to prefabrication of box girders of Shenzhen-Zhongshan corridor[J]. World Bridges, 2019, 47(6): 36-40. [5] 孔祥勇. 小半径曲线箱梁独柱墩匝道桥荷载试验研究[J]. 中外公路, 2012, 32(4): 141-144. KONG Xiangyong. Experimental study on load of ramp bridge with single column pier of small radius curved box girder[J]. Journal of China & Foreign Highway, 2012, 32(4): 141-144. [6] 张爱春. 匝道桥现浇连续箱梁施工支架方案设计[J]. 铁道建筑, 2006, 46(6): 5-6. ZHANG Aichun. Design of scarffold serving casting in situ continuous box girder of ramp bridge[J]. Railway Engineering, 2006, 46(6): 5-6. [7] 杨吉新, 马璐珂. 大跨度小半径曲线箱梁桥地震响应分析[J]. 公路工程, 2018, 43(1): 244-250. YANG Jixin, MA Luke. Seismic response analysis of large span curved box girder bridge with small radius[J]. Highway Engineering, 2018, 43(1): 244-250. [8] 兰振波, 李敏娜. 大纵坡、小半径曲线钢箱梁支座脱空处理[J]. 桥梁建设, 2014, 44(6): 117-121. LAN Zhenbo, LI Minna. Handling of bearing disengagement from a curved steel box girder with heavy longitudinal slope and sharp radius[J]. Bridge Construction, 2014, 44(6): 117-121. [9] 徐德志. 曲线独柱墩连续箱梁整体抗倾覆能力研究[J]. 中外公路, 2015, 35(1): 152-154. XU Dezhi. Study on overall anti-overturning capacity of curved single-column pier continuous box girder[J]. Journal of China & Foreign Highway, 2015, 35(1): 152-154. [10] 黄志斌, 罗旗帜. 曲线连续箱梁桥病害分析及加固措施[J]. 施工技术, 2017, 46(5): 77-79, 93. HUANG Zhibin, LUO Qizhi. Disease analysis and reinforcement measures of curved continuous box-girder bridge[J]. Construction Technology, 2017, 46(5): 77-79, 93. [11] 王伟, 张玉平, 刘小燕, 等. 墩梁固结处模拟方式对连续刚构桥动力特性的影响[J]. 土木工程与管理学报, 2017, 34(3): 62-67. WANG Wei, ZHANG Yuping, LIU Xiaoyan, et al. Influence of joint between piers and girder simulation on dynamic characteristics of continuous rigid frame bridge[J]. Journal of Civil Engineering and Management, 2017, 34(3): 62-67. [12] 文望青, 王德志, 武兵, 等. 高速铁路无支座整体式刚构设计[J]. 桥梁建设, 2020, 50(2): 86-91. WEN Wangqing, WANG Dezhi, WU Bing, et al. Design of integral rigid-frame bridge without bearings on high-speed railway[J]. Bridge Construction, 2020, 50(2): 86-91. [13] 武星, 刘群峰, 马晓力. 有限元方法在曲线梁桥墩梁固结分析中的应用[J]. 公路, 2008, 53(7): 210-214. WU Xing, LIU Qunfeng, MA Xiaoli. Application of finite element method in consolidation analysis of curved beam pier beam[J]. Highway, 2008, 53(7): 210-214. [14] 戴佳程, 李朋, 刘浩, 等. 城市轨道交通简支梁桥桥墩纵向水平刚度限值研究[J]. 铁道建筑, 2020, 60(7): 18-22. DAI Jiacheng, LI Peng, LIU Hao, et al. Research on stiffness limit of bridge piers for simply supported girder bridges in urban rail transit[J]. Railway Engineering, 2020, 60(7): 18-22. [15] 皮水萌, 徐略勤, 孙榕徽. 地震作用下简支梁桥支座-挡块-桥墩相互作用研究[J]. 世界地震工程, 2020, 36(1): 137-145. PI Shuimeng, XU Lueqin, SUN Ronghui. Research on bearing-shear key-pier interaction of simply-supported girder bridges under earthquake excitation[J]. World Earthquake Engineering, 2020, 36(1): 137-145. [16] 蔡小培, 谭茜元, 刘万里, 等. 无砟轨道简支梁桥墩纵向刚度限值研究[J]. 铁道工程学报, 2019, 36(11): 38-44. CAI Xiaopei, TAN (QianXi)(Yuan), LIU Wanli, et al. Research on the limit value of pier longitudinal stiffness of simply supported beam bridge paved with ballastless track[J]. Journal of Railway Engineering Society, 2019, 36(11): 38-44. [17] 李彪, 郭攀. 大纵坡预制T梁墩梁连接方法静力性能数值分析[J]. 公路工程, 2016, 41(2): 205-207, 225. LI Biao, GUO Pan. Analysis of the consolidation on the pier in the precast T beam[J]. Highway Engineering, 2016, 41(2): 205-207, 225. [18] 许震, 罗小烨, 陈宝春, 等. 均匀温度下多跨半刚接整体桥受力性能[J]. 福州大学学报(自然科学版), 2019, 47(5): 669-674. XU Zhen, LUO Xiaoye, CHEN Baochun, et al. Mechanical performance of multi-span semi-rigid integral bridge under uniform temperature[J]. Journal of Fuzhou University (Natural Science Edition), 2019, 47(5): 669-674. [19] 霍学晋, 高玉峰, 李晓斌. 不同墩梁连接方式的长联大跨度铁路桥地震反应特性对比分析[J]. 铁道标准设计, 2010, 54(10): 51-54. HUO Xuejin, GAO Yufeng, LI Xiaobin. Comparison and analysis on reaction property of long connected railway bridge with large span against earthquake in different connection form of piers and beams[J]. Railway Standard Design, 2010, 54(10): 51-54. [20] 王解军, 冯珍, 黄佳, 等. 匝道固结体系曲线箱梁桥弯扭性能分析[J]. 公路工程, 2018, 43(5): 99-104. WANG Jiejun, FENG Zhen, HUANG Jia, et al. Analysis of bending and torsion properties of curved box girder bridge with ramp consolidation system[J]. Highway Engineering, 2018, 43(5): 99-104. [21] 卢二侠, 王解军. 小半径曲线钢箱梁桥固结体系及戴帽施工法[J]. 公路工程, 2020, 45(3): 143-148. LU Erxia, WANG Jiejun. Fixed system and wearing cap construction method of steel box girder bridges with small radius curve[J]. Highway Engineering, 2020, 45(3): 143-148. [22] 中华人民共和国交通运输部. 公路桥涵设计通用规范: JTG D60—2015[S]. 北京: 人民交通出版社, 2015. General Specifications for Design of Highway Bridges and Culverts: JTG D60—2015[S]. Beijing: China Communications Press, 2015.