•  
  •  
 

Abstract

The overall nodes at the support positions are subjected to large forces, often resulting in stress concentration and excessive local stress. To study the force characteristics of the overall nodes at the support positions and provide a basis for design optimization, this paper took the MG22 node of Guangzhou Mingzhu Bay Bridge as the research background and established an Ansys finite element model considering the support effect. The stress distribution law and structural optimization method of this node were studied. The results show that the welded end of the vertical stiffening ribs of the support is usually the stress concentration area. The local stiffness of the structure within the support range and the smoothness of the stiffness change will directly affect the stress peak of the overall node. Optimizing the distribution and coverage of the stiffening ribs in this area can make the force transmission of the plate more reasonable, thereby improving the stress condition of the overall node. After optimization, the amplitudes of the maximum equivalent stress and fatigue stress of the plate decrease to 328.7 MPa and 38.2 MPa, respectively. The stress distribution of the nodal plate and the base plate becomes more uniform. Among them, the peak value of the equivalent stress and the amplitude of the maximum fatigue stress of the nodal plate decrease from 416.6 MPa to 307.2 MPa and from 59.1 MPa to 33.5 MPa, respectively. The equivalent stress peak and the maximum fatigue stress amplitude of the base plate decrease from 396.8 MPa to 257.5 MPa and from 38.3 MPa to 25.2 MPa, respectively. The stress levels of each plate have been greatly reduced, verifying the rationality of the node structure and the effectiveness of force transmission.

Publication Date

6-18-2022

DOI

10.14048/j.issn.1671-2579.2022.03.014

First Page

74

Last Page

79

Submission Date

May 2025

Reference

[1] 谭明鹤, 王荣辉, 黄永辉. 整体节点刚度对钢桁梁桥结构受力的影响分析[J]. 公路, 2007, 52(10): 27-30. TAN Minghe, WANG Ronghui, HUANG Yonghui. Analysis of the influence of integral joint stiffness on the stress of steel truss bridge structure[J]. Highway, 2007, 52(10): 27-30. [2] 王天亮, 王邦楣, 潘东发. 芜湖长江大桥钢梁整体节点疲劳试验研究[J]. 中国铁道科学, 2001, 22(5): 93-97. WANG Tianliang, WANG Bangmei, PAN Dongfa. Steel beam integral node fatigue test of Wuhu Yangtze River bridge[J]. China Railway Science, 2001, 22(5): 93-97. [3] 王会利, 秦泗凤, 张哲. 双层钢桁架悬索桥整体节点疲劳试验研究[J]. 中外公路, 2017, 37(2): 81-84. WANG Huili, QIN Sifeng, ZHANG Zhe. Experimental study on fatigue performance of integral joints in double-deck steel truss suspension bridges[J]. Journal of China & Foreign Highway, 2017, 37(2): 81-84. [4] 崔旸. 大跨双线客专铁路连续钢桁梁桥静动力性能和节点详细应力计算分析[D]. 成都: 西南交通大学, 2015. CUI Yang. Static-dynamic performance and detailed stress analysis of joints in long-span double-track passenger dedicated railway continuous steel truss bridges [D]. Chengdu: Southwest Jiaotong University, 2015. [5] 孙辉, 沈保山, 王新超, 等. 基于惯性释放原理的新能源车车架结构分析[J]. 汽车技术, 2018(12): 55-58. SUN Hui, SHEN Baoshan, WANG Xinchao, et al. Structural analysis of new energy vehicle frame based on inertia relief[J]. Automobile Technology, 2018(12): 55-58. [6] 陈亮. 大跨度铁路连续钢桁梁桥整体和局部受力性能分析[D]. 长沙: 中南大学, 2013. CHEN Liang. Global and local mechanical behavior analysis of long-span railway continuous steel truss bridges[D]. Changsha: Central South University, 2013. [7] 王宏谋. 桥梁盆式橡胶支座的研究与应用[D]. 成都: 西南交通大学, 2008. WANG Hongmou. Research and application of pot bearings for bridges[D]. Chengdu: Southwest Jiaotong University, 2008. [8] 刘岳兵, 王少华, 王宏谋, 等. 基于ANSYS分析的盆式橡胶支座结构及性能研究[J]. 铁道建筑, 2009, 49(10): 1-3. LIU Yuebing, WANG Shaohua, WANG Hongmou, et al. Study on structure and performance of pet type robber bearing based on ANSYS analysis[J]. Railway Engineering, 2009, 49(10): 1-3. [9] 谭洪涛. 松花江公铁两用桥钢箱梁力学性能分析[J]. 中外公路, 2018, 38(6): 122-126. TAN Hongtao. Mechanical performance analysis of steel box girder for Songhua river road-rail bridge[J]. Journal of China & Foreign Highway, 2018, 38(6): 122-126. [10] 王新敏, 李义强, 许宏伟. ANSYS结构分析单元与应用[M]. 北京: 人民交通出版社, 2011. WANG Xinmin, LI Yiqiang, XU Hongwei. ANSYS structural analysis elements and applications [M]. Beijing: China Communications Press, 2011. [11] 马磊. 大跨度钢桁拱桥关键节点受力特性及优化研究[J]. 城市道桥与防洪, 2018(2): 83-87+12-13. MA Lei. Study on stress properties and optimization of critical nodes of long-span steel truss arch bridge[J]. Urban Roads Bridges & Flood Control, 2018(2): 83-87+12-13. [12] 中铁大桥勘测设计院集团有限公司. 铁路桥梁钢结构设计规范: TB 10091—2017[S]. 北京: 中国铁道出版社, 2017. China Railway Major Bridge Reconnaissance & Design Institute Co., Ltd. Code for design of steel structures of railway bridges: TB 10091—2017[S]. Beijing: China Railway Publishing House, 2017. [13] 中交公路规划设计院有限公司. 公路钢结构桥梁设计规范: JTG D64—2015[S]. 北京: 人民交通出版社, 2015. CCCC Highway Consultants Co., Ltd. Design specifications for highway steel bridges: JTG D64—2015[S]. Beijing: China Communications Press, 2015. [14] 黄国兴. 斜独塔斜拉桥关键节点空间有限元受力分析[J]. 中外公路, 2011, 31(3): 153-158. HUANG Guoxing. Spatial finite element analysis of key joints of cable-stayed bridge with inclined single tower[J]. Journal of China & Foreign Highway, 2011, 31(3): 153-158. [15] 李小刚, 姚永丁, 韦华, 等. 悬索桥钢桁加劲梁栓焊节点疲劳试验研究[J]. 城市道桥与防洪, 2015(4): 37-41+53+9. LI Xiaogang, YAO Yongding, WEI Hua, et al. Study on fatigue test of bolted welded joint for steel truss stiffening girder of suspension bridge[J]. Urban Roads Bridges & Flood Control, 2015(4): 37-41+53+9. [16] AMSTUTZ S, NOVOTNY A A. Topological optimization of structures subject to Von Mises stress constraints[J]. Structural and Multidisciplinary Optimization, 2010, 41(3): 407-420. [17] LIU G, WU W M, TANG L, et al. Fatigue test on integral joint of the main truss of the baling river bridge[J].Key Engineering Materials,2010,417-418(12):481. [18] 张凡. 双层钢桁梁桥整体节点受力性能研究[D]. 长沙: 中南大学, 2014. ZHANG Fan. Study on mechanical behavior of integral joints of double-deck steel truss bridge[D]. Changsha: Central South University, 2014.

Share

COinS