•  
  •  
 

Abstract

Based on the analysis of the geometric and mechanical relationship between the main cable and the cable saddle of the suspension bridge, the equation was established by using the geometric compatibility conditions of the cable saddle and the main cable. The design position of the cable saddle was obtained by solving the equation using the dichotomy, avoiding the complex calculation of solving the eight-element nonlinear equation system using the Newton-Raphson method in the traditional method. The improved algorithm for the cable saddle position proposed in this paper has good accuracy and simple calculation. The entire calculation process does not require any initial values and can ensure the convergence of the solution.

Publication Date

6-18-2022

DOI

10.14048/j.issn.1671-2579.2022.03.018

First Page

99

Last Page

103

Submission Date

May 2025

Reference

[1] 王路, 沈锐利, 王昌将, 等. 悬索桥主缆与索鞍间侧向力理论计算方法与公式研究[J].土木工程学报 , 2017, 50(12): 87-96. Wang Lu, Shen Ruili, Wang Changjiang, et al. Theoretical calculation method and formula for lateral force between main cable and saddle in suspension bridges [J]. China Civil Engineering Journal, 2017, 50(12): 87-96. [2] 万田保. 悬索桥主鞍座的几何位移特征及与总体布置的关系[J]. 桥梁建设, 2003, 33(3): 28-31. WAN Tianbao. Relationship between geometric displacement and overall layout of suspension bridge tower saddles[J]. Bridge Construction, 2003, 33(3): 28-31. [3] 孙晋莉. 松雅湖自锚式悬索桥成桥线形计算及施工控制分析[D]. 长沙: 中南大学, 2011. Sun Jinli. Calculation of completed bridge alignment and construction control analysis for Songya lake self-anchored suspension bridge [D]. Changsha: Central South University, 2011. [4] 唐茂林. 大跨度悬索桥空间几何非线性分析与软件开发[D]. 成都: 西南交通大学, 2003. Tang Maolin. Spatial geometrically nonlinear analysis and software development for long-span suspension bridges [D]. Chengdu: Southwest Jiaotong University, 2003. [5] 唐茂林, 沈锐利, 强士中. 悬索桥索鞍位置设计[J]. 公路交通科技, 2001, 18(4): 55-57, 62. Tang Maolin, Shen Ruili, Qiang Shizhong. Design of saddle position for suspension bridges [J]. Journal of Highway and Transportation Research and Development, 2001, 18(4): 55-57, 62. [6] 李传习. 现代悬索桥静力非线性理论与实践[M]. 北京: 人民交通出版社, 2014. LI Chuanxi. Static nonlinear theory and practice of modern suspension bridge[M]. Beijing: China Communications Press, 2014. [7] 杨勇. 非对称悬索桥主缆线形程序开发与参数分析[D]. 重庆: 重庆交通大学, 2010. Yang Yong. Program development and parameter analysis for main cable geometry of asymmetric suspension bridges [D]. Chongqing: Chongqing Jiaotong University, 2010. [8] 邓小康, 徐恭义. 一种悬索桥主缆计算的新方法[J]. 铁道学报, 2019, 41(5): 133-141. DENG Xiaokang, XU Gongyi. New method for calculating main cable of suspension bridge[J]. Journal of the China Railway Society, 2019, 41(5): 133-141. [9] 唐茂林, 强士中, 沈锐利. 悬索桥成桥主缆线形计算的分段悬链线法[J]. 铁道学报, 2003, 25(1): 87-91. TANG Maolin, QIANG Shizhong, SHEN Ruili. Segmental catenary method of calculating the cable curve of suspension bridge[J]. Journal of the China Railway Society, 2003, 25(1): 87-91. [10] 吴章旭. 空间索面悬索桥主缆线形的主索鞍影响分析与程序开发[D]. 重庆: 重庆交通大学, 2017. Wu Zhangxu. Analysis of main cable geometry considering saddle effects for spatial cable suspension bridges and program development [D]. Chongqing: Chongqing Jiaotong University, 2017. [11] 李传习,王雷,刘光栋,等.悬索桥索鞍位置的分离计算法[J].中国公路学报,2005,18(1):63-67. Li Chuanxi, Wang Lei, Liu Guangdong, et al. Separate calculation method for saddle position of suspension bridges [J]. China Journal of Highway and Transport, 2005, 18(1): 63-67.

Share

COinS