•  
  •  
 

Abstract

By incorporating nano-metakaolin under different substitution amounts into concrete, the effects on the mechanical strength, fracture characteristics, carbonation performance, fatigue performance, and other durability properties of concrete after corrosion were studied, and the following conclusions were obtained: Nano-metakaolin can significantly enhance the resistance of concrete to acid rain corrosion, reduce the rate and loss rate of mechanical strength loss, as well as the loss rate of fracture toughness and fracture energy. After 80 corrosion cycles, the loss rate of compressive strength of the modified concrete is reduced by approximately 15% compared to the reference group. The loss rate of flexural tensile strength can be reduced by more than 10%, and both the loss rate of fracture toughness and the loss rate of fracture energy are reduced by more than 30% compared with the reference group. Meanwhile, nano-metakaolin can enhance the carbonation resistance of concrete. Within the 28-day age, nano-metakaolin can significantly reduce the carbonation depth of concrete and increase the carbonation grade of concrete by one level. All six dosages of nano-metakaolin can reduce the carbonation depth of concrete by more than 20% at the 28-day age. The addition of nano-metakaolin can also significantly improve the fatigue life of concrete. Under stress levels of 0.5, 0.65, and 0.8, nano-metakaolin with dosages of 7% and 8% can increase the fatigue life of concrete by more than one time.

Publication Date

6-18-2022

DOI

10.14048/j.issn.1671-2579.2022.03.043

First Page

242

Last Page

246

Submission Date

May 2025

Reference

[1] MEHTA P K, MERYMAN H. Tools for reducing carbon emissions due to cement consumption[J]. Structure, 2009,1(1):11-15. [2] 交通运输部.2019年交通运输行业发展统计公告[N].中国交通报,2020-5-12(002). Ministry of Transport. Statistical bulletin on the development of the transport industry in 2019[N]. China Transportation News, 2020-5-12(002). [3] 申爱琴. 道路工程材料[M]. 2版. 北京: 人民交通出版社, 2016. SHEN Aiqin. Road engineering materials[M]. 2nd ed. Beijing: China Communications Press, 2016. [4] 李宗津, 孙伟, 潘金龙. 现代混凝土的研究进展[J]. 中国材料进展, 2009, 28(11): 1-7+53. LI Zongjin, SUN Wei, PAN Jinlong. New development of contemporary concrete[J]. Materials China, 2009, 28(11): 1-7+53. [5] 姚嘉诚, 延永东, 徐鹏飞, 等. 水泥基渗透结晶型防水材料和纳米二氧化硅改性混凝土自修复性能的研究[J]. 硅酸盐通报, 2020, 39(6): 1772-1777. YAO Jiacheng, YAN Yongdong, XU Pengfei, et al. Self-healing properties of concrete modified by cementitious capillary crystalline waterproofing and nano-silica[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1772-1777. [6] 崔航源. 纳米改性提升混凝土无机涂层氯盐抗力的研究[D]. 徐州: 中国矿业大学, 2020. Cui Hangyuan. Research on chloride resistance enhancement of concrete inorganic coatings via nanomodification[D]. Xuzhou: China University of Mining and Technology, 2020. [7] 孙琳. 纳米SiO2改性水泥混凝土抗盐冻性能研究[J]. 中外公路, 2020, 40(4): 281-285. SUN Lin. Study on salt-freezing resistance of cement concrete modified by nano-SiO2[J]. Journal of China & Foreign Highway, 2020, 40(4): 281-285. [8] 曹竞荣. 纳米SiO2改性水泥混凝土优选及疲劳寿命预估[J]. 中外公路, 2020, 40(4): 286-291. CAO Jingrong. Optimal selection and fatigue life prediction of cement concrete modified by nano-SiO2[J]. Journal of China & Foreign Highway, 2020, 40(4): 286-291. [9] 莫宗云, 高小建. 偏高岭土改性混凝土的耐久性研究进展[J]. 材料导报, 2017, 31(15): 115-119+125. MO Zongyun, GAO Xiaojian. Research progress on the durability of metakaolin concrete[J]. Materials Review, 2017, 31(15): 115-119+125. [10] 王子嘉. 偏高岭土在水泥基材料中应用的研究进展[J]. 硅酸盐通报, 2013, 32(7): 1323-1329. WANG Zijia. Research progress on application of metakaolin in the field of cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(7): 1323-1329. [11] 殷海荣, 武丽华, 陈福, 等. 纳米高岭土的研究与应用[J]. 材料导报, 2006, 20(S1): 196-199. Yin Hairong, Wu Lihua, Chen Fu, et al. Research and application of nano-kaolin [J]. Materials Review, 2006, 20(S1): 196-199. [12] 杨永亮, 王鹏云, 王林浩, 等. 偏高岭土对水泥砂土渗透性的影响研究[J]. 中外公路, 2018, 38(6): 232-234. YANG Yongliang, WANG Pengyun, WANG Linhao, et al. Influence of metakaolin on permeability of cement sand[J]. Journal of China & Foreign Highway, 2018, 38(6): 232-234. [13] HODHOD A, ZAKI S I. Comparison between the effect of addition of nano-calcium carbonate and nano-kaoline on developing the properties of reinforced concrete [C].10thInternational Conference on Nano-Technology in Construction, 2018: 1-24. [14] AL-SALAMIAE,MORSY MS, TAHAS, et al. Physico-mechanical characteristics of blended white cement pastes containing thermally activate dultrafine nano clays[J].Construction and Building Materials, 2013, 47: 138-145. [15] 张均良. 纳米偏高岭土水泥砂浆断裂性能试验研究[D]. 大连: 大连海事大学, 2020. Zhang Junliang. Experimental study on fracture properties of nano-metakaolin cement mortar[D]. Dalian: Dalian Maritime University, 2020. [16] 王迪. 基于CT扫描的纳米偏高岭土混凝土力学性能数值模拟[D]. 大连: 大连海事大学, 2020. Wang Di. Numerical simulation of mechanical properties of nano-metakaolin concrete based on CT scanning[D]. Dalian: Dalian Maritime University, 2020. [17] 范颖芳, 张均良, 李秋超. 纳米偏高岭土对水泥砂浆断裂性能影响的试验研究[J]. 东南大学学报(自然科学版), 2020, 50(4): 637-644. FAN Yingfang, ZHANG Junliang, LI Qiuchao. Experimental study on the effect of nano-metakaolin on the fracture behavior of cement mortar[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(4): 637-644. [18] 郭晓玉, 张世义, 范颖芳. 纳米偏高岭土砂浆氯离子渗透性的试验研究[J]. 广西大学学报(自然科学版), 2017, 42(4): 1526-1534. GUO Xiaoyu, ZHANG Shiyi, FAN Yingfang. Experimental study on chloride permeability of nano metakaolin mortar[J]. Journal of Guangxi University (Natural Science Edition), 2017, 42(4): 1526-1534. [19] 范颖芳, 张世义. 纳米高岭土颗粒改性水泥基复合材料的性能[J]. 土木建筑与环境工程, 2014, 36(1): 130-137. FAN Yingfang, ZHANG Shiyi. Mechanical and chloride diffusion behavior of kaolinite clay modified cement-based material[J]. Journal of Civil, Architectural & Environmental Engineering, 2014, 36(1): 130-137. [20] FAN Y,ZHANGS,WANG Q, et al. Effects of nano kaolinite clay on the freeze-thaw resistance of concrete[J]. Cement and Concrete Composites,2015,62:1-12. [21] 张金山, 李晨, 张国英, 等. 纳米高岭土对水泥混凝土性能的影响[J]. 中国非金属矿工业导刊, 2012(4): 24-25. ZHANG Jinshan, LI Chen, ZHANG Guoying, et al. Effect on concrete performance by nano-Kaolin[J]. China Non-Metallic Minerals Industry, 2012(4): 24-25.

Share

COinS