•  
  •  
 

Abstract

In order to solve the problem that the deformation of epoxy asphalt concrete with steel bridge deck is inconsistent with that of the bridge deck, which leads to the early crack of epoxy asphalt concrete, the improvement effect of polyester fiber on the flexibility and toughness of epoxy asphalt concrete was evaluated by adding polyester fiber to epoxy asphalt concrete via using low temperature bending test and fatigue test method. The results show that polyester fiber exists in the asphalt by adsorption with the light components of asphalt, reinforcement inside the three-dimensional network, limiting, etc. At the same time, it cooperates with the craze matter generated by the asphalt to lock the forward expansion of the tip of the craze matter and the increase in the width of the craze matter. When the polyester fiber is added at the optimal content of 0.3%, Epoxy asphalt concrete has the optimal low temperature deformation capacity and fatigue resistance, and the flexibility and toughness of the mixture are optimal at this time.

Publication Date

6-18-2022

DOI

10.14048/j.issn.1671-2579.2022.03.044

First Page

247

Last Page

250

Submission Date

May 2025

Reference

[1] 何景学,马文石. 环氧树脂增韧改性研究现状[J].粘接, 2006, 27(2): 35-38. He Jingxue, Ma Wenshi. Research progress in toughening modification of epoxy resins[J]. Adhesion, 2006, 27(2): 35-38. [2] 姚兴芳, 高宇, 李健, 等. CTBN结合纳米SiO2改性环氧树脂及增韧机理[J]. 热固性树脂, 2011, 26(1): 16-20. YAO Xingfang, GAO Yu, LI Jian, et al. Performance and toughing mechanism of CTBN and n-SiO2 modified epoxy resin[J]. Thermosetting Resin, 2011, 26(1): 16-20. [3] MEZZENGA R, BOOGH L, MANSONJ A E. A review of dendritic hyperbranched polymer as modifiers in epoxy composites[J]. Composites Science and Technology, 2001, 61(5): 787-795. [4] 朱兴一, 黄志义, 陈伟球. 基于复合材料细观力学模型的沥青混凝土弹性模量预测[J]. 中国公路学报, 2010, 23(3): 29-34. ZHU Xingyi, HUANG Zhiyi, CHEN Weiqiu. Elastic modulus prediction of asphalt concrete based on composite material micromechanics model[J]. China Journal of Highway and Transport, 2010, 23(3): 29-34. [5] 黄坤, 夏建陵, 丁海阳. 改性环氧树脂制备的热固性环氧沥青材料性能[J]. 热固性树脂, 2010, 25(1): 35-39. Huang Kun, Xia Jianling, Ding Haiyang. Properties of thermosetting epoxy asphalt materials prepared by modified epoxy resin[J]. Thermosetting Resin, 2010, 25(1): 35-39. [6] 虞将苗, 邹桂莲, 胡学斌, 等. 沥青混合料老化模拟试验方法与验证研究[J]. 公路交通科技, 2005, 22(10): 14-17. YU Jiangmiao, ZOU Guilian, HU Xuebin, et al. Asphalt-aggregate mixtures aging simulation test study method[J]. Journal of Highway and Transportation Research and Development, 2005, 22(10): 14-17. [7] 张远航, 孟巧娟, 吴国雄. 聚酯纤维沥青混凝土抗疲劳性能试验研究[J]. 公路, 2011, 56(10): 156-161. ZHANG Yuanhang, MENG Qiaojuan, WU Guoxiong. Experiment and research on anti-fatigue performance of polyester fiber reinforced asphalt concrete[J]. Highway, 2011, 56(10): 156-161. [8] 王水. 聚酯纤维掺量对环氧沥青桥面铺装混合料技术性能的影响[J]. 公路工程, 2015, 40(4): 95-99. WANG Shui. Study on performance of epoxy asphalt and its mixture under difrrent polyester fiber content[J]. Highway Engineering, 2015, 40(4): 95-99. [9] 叶群山, 岳红波, 李力, 等. 聚酯纤维沥青混凝土动态模量与疲劳性能研究[J]. 武汉理工大学学报, 2007, 29(9): 5-8. YE Qunshan, YUE Hongbo, LI Li, et al. Dynamic modulus and fatigue property of polyester fiber reinforced asphalt concrete[J]. Journal of Wuhan University of Technology, 2007, 29(9): 5-8. [10] 吴金荣, 董晓红, 马芹永. 聚酯纤维掺量对沥青混凝土疲劳性能影响的试验与分析[J]. 公路, 2014, 59(7): 314-317. WU Jinrong, DONG Xiaohong, MA Qinyong. Test and analysis on polyester fiber content for fatigue performance of asphalt concrete[J]. Highway, 2014, 59(7): 314-317. [11] 徐秀维. 聚酯纤维对沥青混凝土路用性能的贡献研究[J].中外公路, 2013, 33(5): 306-310. Xu Xiuwei. Study on the contribution of polyester fiber to the performance of asphalt concrete pavement[J]. Journal of China & Foreign Highway, 2013, 33(5): 306-310.

Share

COinS