Abstract
To study the void problem of airport cement concrete pavement slabs, a three-dimensional model of the airport pavement structure was established using finite element software. The stress distribution of the pavement slabs under the action of self-weight stress and aircraft load was calculated, and the force characteristics of different voids at different positions along the joints were studied. The calculation results show that under the action of self-weight stress, in addition to the stress concentration occurring in the middle of the void, the stress concentration phenomenon will also occur at the edge of the void, that is, the critical surface between the void area and the non-void area. Under the action of aircraft load, stress concentration occurs in the middle of the void area, and the panel with a large void area has a higher stress peak than the one with a small void area. Therefore, for the void area at the bottom of the plate, it is necessary to track and detect it in a timely manner and deal with it promptly to prevent further aggravation of the void.
Publication Date
6-18-2022
DOI
10.14048/j.issn.1671-2579.2022.03.007
First Page
36
Last Page
42
Submission Date
May 2025
Recommended Citation
Yunfei, Guo; Chengchao, Guo; and Weihong, Yan
(2022)
"Analysis of Mechanical Characteristics of Void Area of Road Deck under the Load of the Aircraft,"
Journal of China & Foreign Highway: Vol. 42:
Iss.
3, Article 7.
DOI: 10.14048/j.issn.1671-2579.2022.03.007
Available at:
https://zwgl1980.csust.edu.cn/journal/vol42/iss3/7
Reference
[1] 同济大学. 民用机场道面评价管理技术规范: MH/T 5024—2019[S]. 北京: 中国民航出版社, 2019. Tongji University. Technical specification for evaluation and management of civil airport pavements: MH/T 5024—2019 [S]. Beijing: China Civil Aviation Publishing House, 2019. [2] 赵鸿铎, 马鲁宽, 唐龙, 等. 基于数据挖掘的民用机场水泥道面维护辅助决策模型[J]. 同济大学学报(自然科学版), 2018, 46(12): 1676-1682, 1753. ZHAO Hongduo, MA Lukuan, TANG Long, et al. Maintenance assistant decision-making model of civil airport cement pavements based on data mining[J]. Journal of Tongji University (Natural Science), 2018, 46(12): 1676-1682, 1753. [3] WU Z, ZHANG Z J, ABADIE, C. Determining structural strength of existing asphalt layer using condition survey data[J].Int.J.Pavement Eng.,2013,14(7):603-611. [4] FAKHRI M, SHAHNI DEZFOULIAN R. Pavement structural evaluation based on roughness and surface distress survey using neural network model[J]. Construction and Building Materials, 2019, 204: 768-780. [5] 凌建明, 朱立国. 高胎压下机场环氧沥青道面结构动力响应分析[J]. 同济大学学报(自然科学版), 2016, 44(10): 1538-1544. LING Jianming, ZHU Liguo. Dynamic response analysis of airfield epoxy asphalt pavement under high tire inflation pressure[J]. Journal of Tongji University (Natural Science), 2016, 44(10): 1538-1544. [6] 凌道盛, 张凡, 赵云, 等. 飞机荷载作用下非均匀道基动力响应分析[J]. 土木工程学报, 2017, 50(2): 97-109. LING Daosheng, ZHANG Fan, ZHAO Yun, et al. Dynamic response analysis of inhomogeneous subgrade subjected to moving aircraft loads[J]. China Civil Engineering Journal, 2017, 50(2): 97-109. [7] WALTER R B. Nonlinear finite element analysis of heavily loaded airfield pavement system[C]. Application of the Element Method in Geotechnical Engineering.New York: Elsevier, 1972: 657-693. [8] 许巍, 岑国平, 戴经梁. 简易机场道面结构的疲劳特性试验[J]. 交通运输工程学报, 2008, 8(6): 40-43. XU Wei, CEN Guoping, DAI Jingliang. Fatigue characteristic experiments of field airfield pavement structure[J]. Journal of Traffic and Transportation Engineering, 2008, 8(6): 40-43. [9] HARDY M S A,CEBON D. Importance of speed and frequency in flexible pavement response[J].Journal of Engineering Mechanics, 1994, 120(3): 463-482. [10] 蔡靖, 李岳, 常欢. 转弯移动荷载下机场复合道面轮辙研究[J]. 土木工程学报, 2018, 51(8): 118-128. CAI Jing, LI Yue, CHANG Huan. Rutting analysis of airport composite pavement under turning moving load[J]. China Civil Engineering Journal, 2018, 51(8): 118-128. [11] 黄勇, 袁捷, 谭悦, 等. 机场水泥混凝土道面脱空判定及影响[J]. 同济大学学报(自然科学版), 2012, 40(6): 861-866. HUANG Yong, YUAN Jie, TAN Yue, et al. Identification of void beneath airport cement concrete pavement and its influence[J]. Journal of Tongji University (Natural Science), 2012, 40(6): 861-866. [12] 卢艳楠, 肖昭然. 探地雷达在机场道面脱空检测的应用研究[J]. 河南科技, 2015, 34(13): 99-101. LU Yannan, XIAO Zhaoran. Study on the application of GPR in the void detection of airport pavement[J]. Journal of Henan Science and Technology, 2015, 34(13): 99-101. [13] 游庆龙, 李京洲, 罗志刚, 等. 飞机轮载作用下机场复合式道面结构力学分析[J]. 江苏大学学报(自然科学版), 2020, 41(1): 111-117. YOU Qinglong, LI Jingzhou, LUO Zhigang, et al. Mechanical analysis of airport composite pavement structure under aircraft wheel load[J]. Journal of Jiangsu University (Natural Science Edition), 2020, 41(1): 111-117. [14] 肖春发, 罗卫, 粟宋来, 等. 水泥路面板加铺沥青面层后板底脱空检测及评价方法[J]. 中外公路, 2020, 40(1): 52-55. XIAO Chunfa, LUO Wei, SU Songlai, et al. Detection and evaluation methods for void beneath cement concrete pavement slabs after asphalt overlay [J]. Journal of China & Foreign Highway, 2020, 40(1): 52-55. [15] 杨荣. 车辆荷载与水耦合作用下水泥混凝土路面板底脱空机理研究[J]. 中外公路, 2018, 38(3): 83-87 Yang Rong. Mechanism of void formation under cement concrete pavement slabs under coupled vehicle-water loads [J]. Journal of Chinese and Foreign Highway, 2018, 38(3): 83-87. [16] JOHNSON D, SUKUMARAN B, MEHTA Y, et al. Three dimensional finite element analysis of flexible pavements to assess the effects of wander and wheel configuration[C].The2007 FAA Worldwide Airport Technology Transfer Conference. Atlantic City, New Jersey, 2007: 1-17. [17] 刘丹. 水泥混凝土路面接缝及结构优化研究[D]. 武汉: 武汉理工大学, 2003. LIU Dan. Research on joint and structural optimization of cement concrete pavements [D]. Wuhan: Wuhan University of Technology, 2003. [18] 中国民航机场建设集团公司. 民用机场水泥混凝土道面设计规范: MH/T 5004—2010[S]. 北京: 中国民航出版社, 2010. China Airport Construction Group Corporation. Design specification for cement concrete pavements of civil airports: MH/T 5004—2010[S]. Beijing: China Civil Aviation Publishing House, 2010. [19] 中国民航机场建设集团公司. 民用机场沥青混凝土道面设计规范: MH 5010—2017[S]. 北京: 中国民航出版社, 2017. China Airport Construction Group Corporation. Design specification for asphalt concrete pavements of civil airports: MH 5010—2017[S]. Beijing: China Civil Aviation Publishing House, 2017.