•  
  •  
 

Abstract

In response to the challenges posed by massive shield muck production and inadequate disposal solutions, scholars have systematically reviewed the research on shield muck recycling technologies. Based on the challenges faced by the treatment of shield muck in China, this paper formed a systematic understanding of the classification of shield muck, the progress of resource recycling technologies, and typical applications, introduced the pretreatment methods of shield musk in China and abroad, and summarized the application scenarios and resource recycling technologies of shield musk in detail. Then, the paper analyzed the problems of shield musk recycling technologies, such as expensive curing agents, serious pollution, lack of pollutant analysis of roadbed backfill materials, low strength of recycled brick, and unconspicuous market benefit. The standardized technical process of “pre-classification treatment of shield musk, feasibility evaluation of recycling, resource recycling scenario, and performance and benefit evaluation” for shield musk recycling was constructed. The research directions of the development of shield musk curing agents and the migration of pollutants were emphasized. Finally, the development trend of shield musk recycling technologies was prospected.

Publication Date

1-18-2024

DOI

10.14048/j.issn.1671-2579.2022.06.001

First Page

1

Last Page

11

Submission Date

May 2025

Reference

[1] 隧道建设(中英文)编辑部.2020年度中国城市轨道交通线路概况[J].隧道建设(中英文) ,2021,41(2):164. [1] Editorial Department of Tunnel Construction. Overview of urban rail transit lines in China in 2020[J]. Tunnel Construction, 2021, 41(2): 164. [2] 陈蕊, 杨凯, 肖为, 等. 工程渣土的资源化处理处置分析[J]. 环境工程, 2020, 38(3): 22-26. CHEN Rui, YANG Kai, XIAO Wei, et al. Analysis on recycling treatment and disposal of engineering slag[J]. Environmental Engineering, 2020, 38(3): 22-26. [3] 肖建庄, 张青天, 段珍华, 等. 建筑废物堆山造景工程探索[J]. 结构工程师, 2019, 35(4): 60-69. XIAO Jianzhuang, ZHANG Qingtian, DUAN Zhenhua, et al. The exploration of using construction waste in piling up hill for making scenery[J]. Structural Engineers, 2019, 35(4): 60-69. [4] XU Q, PENG D L, LI W L, et al. The catastrophic landfill flowslide at Hongao dumpsite on 20 December 2015 in Shenzhen, China[J]. Natural Hazards and Earth System Sciences, 2017, 17(2): 277-290. [5] 张华. 大直径盾构泥水分离处理技术研究与应用[J]. 隧道建设(中英文), 2020, 40(S2): 264-270. ZHANG Hua. Research and application of slurry separation treatment technology for large diameter shield[J]. Tunnel Construction, 2020, 40(S2): 264-270. [6] 谢亦朋, 张聪, 阳军生, 等. 盾构隧道渣土资源化再利用技术研究及展望[J]. 隧道建设(中英文), 2022, 42(2): 188-207. XIE Yipeng, ZHANG Cong, YANG Junsheng, et al. Research and prospect on technology for resource recycling of shield tunnel spoil[J]. Tunnel Construction, 2022, 42(2): 188-207. [7] KIYOSHI O, KIYOTO M. Environmental Economic Evaluation Model for Effective Utilization of Soil and Waste from Construction[J] . Soiland Foundations,2003, 51(5) :10-18. [8] 朱伟, 钱勇进, 王璐, 等. 盾构隧道渣土与泥浆的分类与处理利用技术及主要问题[J]. 隧道建设(中英文), 2021, 41(S2): 1-13. ZHU Wei, QIAN Yongjin, WANG Lu, et al. Classification, treatment and utilization technology and main problems of muck and mud in shield tunnel[J]. Tunnel Construction, 2021, 41(S2): 1-13. [9] 湖南锦佳环保科技有限公司,中铁环境科技工程有限公司.湖南省盾构渣土处理技术标准: DBJ 43 / T 515— 2020[S].长沙:湖南省住房和城乡建设厅,2020. [9] Hunan Jinjia Environmental Protection Technology Co., Ltd., China Railway Environmental Technology Engineering Co., Ltd. Technical Standard for Shield Tunneling Muck Treatment in Hunan Province: DBJ 43/T 515—2020 [S]. Changsha: Hunan Provincial Department of Housing and Urban-Rural Development, 2020. [10] OGGERI C, FENOGLIO T M, VINAI R. Tunnel spoil classification and applicability of lime addition in weak formations for muck reuse[J]. Tunnelling and Underground Space Technology, 2014, 44: 97-107. [11] 房营光, 徐敏, 朱忠伟. 碱渣土的真空-电渗联合排水固结特性试验研究[J]. 华南理工大学学报(自然科学版), 2006, 34(11): 70-75. FANG Yingguang, XU Min, ZHU Zhongwei. Experimental investigation into draining consolidation behavior of soda residue soil under vacuum preloading-electro-osmosis[J]. Journal of South China University of Technology (Natural Science Edition), 2006, 34(11): 70-75. [12] 房营光, 朱忠伟, 莫海鸿, 等. 碱渣土的振动排水固结特性试验研究[J]. 岩土力学, 2008, 29(1): 43-47. FANG Yingguang, ZHU Zhongwei, MO Haihong, et al. Experimental research on draining consolidation behavior of soda residue soil under vibration[J]. Rock and Soil Mechanics, 2008, 29(1): 43-47. [13] 彭以舟, 邹胜勇, 陈晓波, 等. 工业废渣联合固化疏浚淤泥填筑路基施工技术[J]. 建筑技术, 2017, 48(3): 332-335. PENG Yizhou, ZOU Shengyong, CHEN Xiaobo, et al. Construction technology of highway subgrades for solidified dredged sludge with industrial wastes[J]. Architecture Technology, 2017, 48(3): [14] 白玉恒. 粉煤灰固化淤泥路用性能及填筑技术研究[D]. 上海: 上海交通大学, 2009. BAI Yuheng. Study on road performance and filling technology of fly ash solidified sludge[D]. Shanghai: Shanghai Jiao Tong University, 2009. [15] 力乙鹏, 李婷. 土壤固化剂的固化机理与研究进展[J]. 材料导报, 2020, 34(S2): 1273-1277, 1298. LI Yipeng, LI Ting. Curing mechanism and research progress of soil curing agent[J]. Materials Reports, 2020, 34(S2): 1273-1277, 1298. [16] 樊恒辉, 高建恩, 吴普特. 土壤固化剂研究现状与展望[J]. 西北农林科技大学学报(自然科学版), 2006, 34(2): 141-146, 152. FAN Henghui, GAO Jianen, WU Pute, WU Pute. Prospect of researches on soil stabilizer[J]. Journal of Northwest Sci-Tech University of Agriculture and Forestry (Natural Science Edition), 2006, 34(2): 141-146, 152. [17]李兵. 土壤固化剂的作用机理及应用现状[J]. 福建建材, 2013(1): 14-16. LI Bing. Action mechanism and application status of soil curing agent[J]. Fujian Building Materials, 2013(1): 14-16. [18]张小芳,陈瑞敏,简文彬.水泥-矿渣-粉煤灰固化淤泥的水分转化规律及其固化机理研究[J].工程地质学报,2023,31(01):102-112. [18] Zhang Xiaofang, Chen Ruimin, Jian Wenbin. Study on moisture transformation laws and solidification mechanisms of cement-slag-fly ash solidified silt [J] Journal of Engineering Geology, 2023,31(01):102-112. [19] 陈永辉, 陈明玉, 张婉璐, 等. 矿渣-水泥固化碱渣土的工程特性[J]. 建筑材料学报, 2017, 20(4): 582-585, 597. CHEN Yonghui,CHEN Mingyu,ZHANG Wanlu, et al. Engineering properties of solidified soda residue with GGBS and cement[J]. Journal of Building Materials, 2017, 20(4): 582-585, 597. [20] 李琴, 孙可伟, 蒋卓吟. 固化剂固化建筑渣土试验研究[J]. 硅酸盐通报, 2012, 31(5): 1247-1251. LI Qin, SUN Kewei, JIANG Zhuoyin. Test research on the solidified mass made of building residues by stabilizer[J]. Bulletin of the Chinese Ceramic Society, 2012, 31(5): 1247-1251. [万方] [21] 张清峰, 王东权, 姜晨光, 等. 建筑渣土作为城市道路填料的路用性能研究[J]. 公路, 2006, 51(11): 157-160.ZHANG Qingfeng, WANG Dongquan, JIANG Chenguang, et al. A study on road performance of construction waste as municipal road filling[J]. Highway, 2006, 51(11): 157-160. [22] 杨晴雯, 裴向军, 黄润秋. 改性钠羧甲基纤维素加固粉砂土水稳性及稳定机理分析[J]. 长江科学院院报, 2019, 36(12): 107-112, 120.YANG Qingwen, PEI Xiangjun, HUANG Runqiu. Silty sand stabilized by modified carboxymethylcellulose: water stability and mechanism of stabilization[J]. Journal of Yangtze River Scientific Research Institute, 2019, 36(12): 107-112, 120. [23] 岳爱敏,唐丽君,刘新状.环保型 BJ-G土壤固化剂固化性能研究[J].新型建筑材料,2020, 47(9) : 111- 114, 154. [23] Yue Aimin, Tang Lijun, Liu Xinzhuang. Study on the solidification performance of eco-friendly BJ-G soil stabilizer [J]. New Building Materials, 2020, 47(9): 111–114, 154. [24] 杨富民, 何军利, 孙成晓, 等. TK-G型液体土壤固化剂的研制及其固化机理[J]. 科学技术与工程, 2019, 19(5): 242-246. YANG Fumin, HE Junli, SUN Chengxiao, et al. Development and curing mechanism of TK-G soil solidified agent[J]. Science Technology and Engineering, 2019, 19(5): 242-246. [25] 张丽萍, 张兴昌, 孙强. EN-1固化剂加固黄土的工程特性及其影响因素[J]. 中国水土保持科学, 2009, 7(4): 60-65. ZHANG Liping, ZHANG Xingchang, SUN Qiang. Engineering properties and influencing factors of solidified loess by EN-1 solidifying agent[J]. Science of Soil and Water Conservation, 2009, 7(4): 60-65. [26] 石坚, 李昭鹏, 赵宝. 路邦EN-1土体固化剂路用性能的试验研究[J]. 铁道建筑, 2009, 49(8): 103-105. SHI Jian, LI Zhaopeng, ZHAO Bao. Experimental study on road performance of Ropong EN-1 soil curing agent[J]. Railway Engineering, 2009, 49(8): 103-105. [27] 王振宇, 阳军生, 王星华. ZY-1对盾构废弃渣土固化过程作用机理的微观试验研究[J]. 铁道科学与工程学报, 2020, 17(8): 2075-2082. WANG Zhenyu, YANG Junsheng, WANG Xinghua. Experimental study of micro-structural mechanisms of waste residue of \rEPB stabilized by ZY-1 agent[J]. Journal of Railway Science and Engineering, 2020, 17(8): 2075-2082. [28] 吴冠雄. 生物酶土壤固化剂加固土现场试验研究[J]. 公路工程, 2013, 38(1): 70-74, 81.▇WU Guanxiong. Field test study on stabilized soil by TerraZyme soil stabilizer[J]. Highway Engineering, 2013, 38(1): 70-74, 81. [29] 张心平, 苏海涛, 彭红涛, 等. 派酶固化土壤的无侧限强度试验研究[J]. 公路, 2008, 53(6): 171-172. ZHANG Xinping, SU Haitao, PENG Hongtao, et al. Highway, 2008, 53(6): 171-172. [30] 董辉, 程子华, 刘禹岐, 等. 生物酶改良淤泥质土的时效强度试验研究[J]. 水文地质工程地质, 2020, 47(2): 84-94. DONG Hui, CHENG Zihua, LIU Yuqi, et al. Experimental study of aging strength of the mucky soils improved with bio-enzyme[J]. Hydrogeology & Engineering Geology, 2020, 47(2): 84-94. [31] RIVIERA P P, BELLOPEDE R, MARINI P, et al. Performance-based re-use of tunnel muck as granular material for subgrade and sub-base formation in road construction[J]. Tunnelling and Underground Space Technology, 2014, 40: 160-173. [32] MLINARC,SEMPELMANN F,KOCH G,etal. Tunnel Spoil as a Source of Raw Materials for an Auto bahnsustainable Reuse of Resources through the Example ofthe S 10[J] . Geomechanics and Tunnelling, 2014,7(5): 428-436. [33] TAUER A, POSCH H, KAGER M, et al. Recycling or landfill–Experience based on the example of Koralm Tunnel, contract KAT2 from design to construction[J]. Geomechanics and Tunnelling, 2017, 10(6): 700-710. [34] XIAO R, POLACZYK P, JIANG X, et al. Cementless controlled low-strength material (CLSM) based on waste glass powder and hydrated lime: Synthesis, characterization and thermodynamic simulation[J]. Construction and Building Materials, 2021, 275: 122157. [35] 郝彤, 王帅, 冷发光. 利用地铁盾构渣土制备高流态充填材料[J]. 硅酸盐通报, 2020, 39(5): 1525-1532. HAO Tong, WANG Shuai, LENG Faguang. Preparation of high fluid filling materials by using subway shield muck[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(5): 1525-1532. [36] 朱伟, 赵笛, 范惜辉, 等. 渣土改良为流动化回填土的应用[J]. 河海大学学报(自然科学版), 2021, 49(2): 134-139.ZHU Wei, ZHAO Di, FAN Xihui, et al. Research on application of residue soil-based flowable fill[J]. Journal of Hohai University (Natural Sciences), 2021, 49(2): 134-139. [37] 贾冬冬. 低强度流动性建筑垃圾回填材料基本性能研究[D]. 北京: 北京工业大学, 2014. JIA Dongdong. Study on basic properties of low-strength fluidity construction waste backfill materials[D]. Beijing: Beijing University of Technology, [38] 陈建强, 成方育, 栗曰峰. 利用建筑渣土制备烧结普通砖的试验研究[J]. 青岛理工大学学报, 2020, 41(2): 35-41.CHEN Jianqiang, CHENG Fangyu, LI Yuefeng. Experimental study on the production of fired common bricks with architecture sediment[J]. Journal of Qingdao University of Technology, 2020, 41(2): 35-41. [39] 姜军. 盾构渣土综合环保循环利用路径研究[J]. 广东建材, 2020, 36(9): 28-32.▇JIANG Jun. Study on comprehensive environmental protection recycling path of shield muck[J]. Guangdong Building Materials, 2020, 36(9): 28-32. [40] 卢红霞, 张灵, 高凯, 等. 利用建筑垃圾及高炉渣制备新型烧结砖的研究[J]. 新型建筑材料, 2019, 46(2): 133-137. LU Hongxia, ZHANG Ling, GAO Kai, et al. Preparation of new-type sintered bricks by construction wastes and blast furnace slag[J]. New Building Materials, 2019, 46(2): 133-137. [41] 郭小雨, 陈枝东, 裴立宅, 等. 改性矿渣水泥-渣土免烧砖的制备与性能表征[J]. 新型建筑材料, 2020, 47(5): 75-79. GUO Xiaoyu, CHEN Zhidong, PEI Lizhai, et al. Preparation and characterization of sintering-free bricks based on modified slag cement & muck[J]. New Building Materials, 2020, 47(5): 75-79. [42] 姚清松,蔡坤坤,刘超,等.粉质黏土地层基坑渣土免烧砖配比及力学性能研究[J].隧道建设(中英文) , 2020, 40(S1) : 145-151. [42] Yao Qingsong, Cai Kunkun, Liu Chao, et al. Study on Mixing Proportion and Mechanical Properties of Unfired Bricks Made from Foundation Pit Muck in Silty Clay Stratum [J]. Tunnel Construction (Chinese & English), 2020, 40(S1): 145–151. [43] 刘金龙, 林傲然, 潘阳, 等. 加压成型砂浆包覆固化碱渣复合砖制备技术[J]. 环境工程, 2015, 33(S1): 535-537. LIU Jinlong, LIN Aoran, PAN Yang, et al. Preparation technology of alkali slag composite brick coated by pressurized molding mortar[J]. Environmental Engineering, 2015, 33(S1): 535-537. [44] 王振宇, 丁建彤, 郭玉顺. 结构轻骨料混凝土的应力-应变全曲线[J]. 混凝土, 2005(3): 39-41, 66. WANG Zhenyu, DING Jiantong, GUO Yushun. Stress-Strain curves of structural lightweight aggregate concretes[J]. Concrete, 2005(3): 39-41, 66. [45]朱乐辉, 朱衷榜. 水处理滤料: 球形轻质陶粒的研制[J]. 环境保护, 2000, 28(1): 35-36, 39. ZHU (LeYue)(Hui), ZHU Zhongbang. Study of water treatment filter material: light global ceramsites[J]. Environmental Protection, 2000, 28(1): 35-36, 39. [46]王征, 郭玉顺. 粉煤灰高强陶粒烧胀规律的试验研究[J]. 新型建筑材料, 2002, 29(2): 10-14. WANG Zheng, GUO Yushun. Test and study on firing expansion rule of fly ash high strength Ceramisite[J]. New Building Materials, 2002, 29(2): 10-14. [47] 张腾飞. 陶粒多孔混凝土的抗冻性能研究[J]. 河南建材, 2020(4): 33-34. ZHANG Tengfei. Study on frost resistance of ceramsite porous concrete[J]. Henan Building Materials, 2020(4): 33-34. [48] 李海斌, 谢发之, 宣寒, 等. 氧化镁/地铁渣土复合陶粒的制备及除磷性能研究[J]. 应用化工, 2015, 44(9): 1581-1585.LI Haibin, XIE Fazhi, XUAN Han, et al. Phosphate removal by using magnesium oxide/construction waste of subway composite ceramsite[J]. Applied Chemical Industry, 2015, 44(9): 1581-1585. [49] 谢发之, 李海斌, 李国莲, 等. 盾构渣土基碳复合陶粒的制备及除磷性能[J]. 应用化学, 2017, 34(2): 211-219. XIE Fazhi, LI Haibin, LI Guolian, et al. Phosphate removal by using shield residues/carbon composite ceramsite[J]. Chinese Journal of Applied Chemistry, 2017, 34(2): 211-219. [50] 张磊, 张鸿飞, 荣辉, 等. 700~900密度等级渣土陶粒的研制及其性能[J]. 建筑材料学报, 2018, 21(5): 803-810.ZHANG Lei, ZHANG Hongfei, RONG Hui, et al. Fabrication and performance of 700-900 density grade muck ceramsite[J]. Journal of Building Materials, 2018, 21(5): 803-810. [51] 高瑞晓, 荣辉, 王海良, 等. 800密度等级的渣土陶粒制备及性能研究[J]. 硅酸盐通报, 2017, 36(5): 1646-1650. GAO Ruixiao, RONG Hui, WANG Hailiang, et al. Preparation and performance of 800 density grades muck-ceramsite[J]. Bulletin of the Chinese Ceramic Society, 2017, 36(5): 1646-1650. DOI: 10.16552/j.cnki.issn1001-1625.2017.05.032.[知网中文][知网英文][万方][知网中文带页码] [52] 史庆涛, 武文清, 陆野. 含废弃泥浆和渣土同步砂浆配比优化及性能改善分析[J]. 三峡大学学报(自然科学版), 2020, 42(4): 101-105. SHI Qingtao, WU Wenqing, LU Ye. Mix proportion optimization and performance improvement analysis of synchronous mortar with waste mud and residue[J]. Journal of China Three Gorges University (Natural Sciences), 2020, 42(4): 101-105. [53] 吴克雄, 李顺凯, 杨钊, 等. 废弃泥浆改性同步注浆材料试验研究[J]. 科学技术与工程, 2017, 17(20): 277-281. WU Kexiong, LI Shunkai, YANG Zhao, et al. Experimental study on the waste mud modified synchronous grouting materials[J]. Science Technology and Engineering, 2017, 17(20): 277-281. [54] 槐荣国, 黄思远, 钟小春, 等. 盾构管片壁后新型同步双液浆开发及工程应用[J]. 隧道建设(中英文), 2022, 42(9): 1521-1528. HUAI Rongguo, HUANG Siyuan, ZHONG Xiaochun, et al. Development and engineering application of novel synchronous double-component grouting behind shield segment[J]. Tunnel Construction, 2022, 42(9): 1521-1528. [55] 吴言坤, 李小冬, 陈健, 等. 盾构隧道专用塑化剂对同步注浆浆液性质影响研究[J]. 隧道建设(中英文), 2022, 42(5): 798-806. WU Yankun, LI Xiaodong, CHEN Jian, et al. Influence of special plasticizer for shield tunnel on properties of synchronous grouting slurry[J]. Tunnel Construction, 2022, 42(5): 798-806. [56] KARIUS V, HAMER K, LAGER T. Reaction fronts in brick-sand layers:  column experiments and modeling[J]. Environmental Science & Technology, 2002, 36(13): 2875-2883. [57] BEYER C, KONRAD W, RÜGNER H, et al. Model-based prediction of long-term leaching of contaminants from secondary materials in road constructions and noise protection dams[J]. Waste Management, 2009, 29(2): 839-850. [58] BUTERA S, TRAPP S, ASTRUP T F, et al. Soil retention of hexavalent chromium released from construction and demolition waste in a road-base-application scenario[J]. Journal of Hazardous Materials, 2015, 298: 361-367. [59] 陈宇云, 田寅, 王周峰, 等. 建筑垃圾中镉和砷在路基中迁移对地下水的影响[J]. 安徽农学通报, 2018, 24(13): 74-76. CHEN Yuyun, TIAN Yin, WANG Zhoufeng, et al. The effect of migration of cadmium and arsenic from construction waste in roadbed on groundwater[J]. Anhui Agricultural Science Bulletin, 2018, 24(13): 74-76.

Share

COinS