•  
  •  
 

Abstract

To study the evolution law of compressive strength, flexural strength, and erosion resistance of concrete under a corrosive environment, firstly, the corrosive environment was simulated with 3% Na2SO4 and NaCl solution, and then the performance change of concrete under the corrosive environment was analyzed by adding different contents of polypropylene fiber. The results show that: ① When the content of polypropylene fiber is 0–3%, the compressive strength and flexural strength of concrete gradually increase, and the maximum compressive strength and flexural strength of concrete in Na2SO4 and NaCl solutions are 50.2 MPa and 48.3 MPa, as well as 6.2 MPa and 5.8 MPa, respectively. When the content of polypropylene fiber is 3%–5%, the compressive strength and flexural strength of concrete gradually decrease. ② With the prolongation of corrosion time, the compressive strength and flexural strength of polypropylene fiber concrete decrease gradually. After 14 days of corrosion, the compressive strength and flexural strength of polypropylene fiber concrete in Na2SO4 and NaCl solutions are 45.3 MPa and 42.6 MPa, as well as 5.6 MPa and 4.9 MPa, respectively. ③ At 30 mm away from the surface, the SO24− concentration of concrete without fiber is 1.4%, and the Cl− concentration is 1.6%. The SO24− concentration of concrete with 3% polypropylene fiber is 1.1%, and Cl− concentration is 1.1%.

Publication Date

1-18-2024

DOI

10.14048/j.issn.1671-2579.2022.06.038

First Page

202

Last Page

205

Submission Date

May 2025

Reference

[1] 李涛, 王应生. 氯腐蚀环境混凝土中钢筋腐蚀速度及腐蚀过程分析[J]. 工业安全与环保, 2010, 36(6): 61-62. LI Tao, WANG Yingsheng. Analyses on the corrosion speed and process in reinforced concrete corrosion by chlorion[J]. Industrial Safety and Environmental Protection, 2010, 36(6): 61-62. [2] 蒋正武,赵楠,袁政成.地下水强酸盐复合腐蚀环境下耐腐蚀混凝土的制备[J].商品混凝土 ,2015(10) :41-45. [2] Jiang Zhengwu, Zhao Nan, Yuan Zhengcheng. Preparation of Corrosion-Resistant Concrete in Groundwater with Strong Acid-Salt Composite Corrosive Environment [J]. Commercial Concrete, 2015(10): 41–45. [3] 余红发, 孙伟, 张云升, 等. 在冻融或腐蚀环境下混凝土使用寿命预测方法Ⅰ: 损伤演化方程与损伤失效模式[J]. 硅酸盐学报, 2008, 36(S1): 128-135. YU Hongfa, SUN Wei, ZHANG Yunsheng, et al. Prediction method of concrete service life in freeze-thaw or corrosive environment ⅰ: damage evolution equation and damage failure mode[J]. Journal of the Chinese Ceramic Society, 2008, 36(S1): 128-135. [4] 贡金鑫, 王海超, 李金波. 腐蚀环境中荷载作用对钢筋混凝土梁腐蚀的影响[J]. 东南大学学报(自然科学版), 2005, 35(3): 421-426. DOI: 10.3321/j.issn: 1001-0505.2005.03.021. GONG Jinxin, WANG Haichao, LI Jinbo. Effect of loading on corrosion of reinforced concrete beam exposed in corroded environment[J]. Journal of Southeast University (Natural Science Edition), 2005, 35(3): 421-426. [5] 陈志城, 包亦望. 酸环境腐蚀对混凝土接触变形和损伤的影响[J]. 建筑材料学报, 2001, 4(3): 244-249. CHEN Zhicheng, BAO Yiwang. Influence of environmental corrosion on contact deformation and damage of concrete materials[J]. Journal of Building Materials, 2001, 4(3): 244-249. [6] 贡金鑫, 赵国藩. 腐蚀环境下钢筋混凝土结构疲劳可靠度的分析方法[J]. 土木工程学报, 2000, 33(6): 50-56. GONG Jinxin, ZHAO Guofan. Fatigue reliability analysis for corroded reinforced concrete structures[J]. China Civil Engineering Journal, 2000, 33(6): 50-56. [7] 于忠, 胡蔚儒. 化工大气环境中混凝土的腐蚀机理及性能研究[J]. 工业建筑, 2000, 30(5): 16-20. YU Zhong, HU WeiRu. Study of corrosion mechanism and behavior of concrete in the chemical atmosphere environment[J]. Industrial Construction, 2000, 30(5): 16-20. [8] 张云清, 余红发, 孙伟, 等. MgSO4腐蚀环境作用下混凝土的抗冻性[J]. 建筑材料学报, 2011, 14(5): 698-702. DOI: 10.3969/j.issn.1007-9629.2011.05.024. ZHANG Yunqing, YU Hongfa, SUN Wei, et al. Frost resistance of concrete under action of magnesium sulfate attack[J]. Journal of Building Materials, 2011, 14(5): 698-702. [9] 梁咏宁, 黄君一, 林旭健, 等. 氯盐对受硫酸盐腐蚀混凝土性能的影响[J]. 福州大学学报(自然科学版), 2011, 39(6): 947-951. LIANG Yongning, HUANG Junyi, LIN Xujian, et al. The effect of chloride on concrete under sulfate attack[J]. Journal of Fuzhou University (Natural Science Edition), 2011, 39(6): 947-951. [10] 马昆林, 谢友均, 龙广成. 氯盐环境下桥梁混凝土结构的腐蚀行为及破坏机理[J]. 建筑科学与工程学报, 2008, 25(3): 32-36. MA Kunlin, XIE Youjun, LONG Guangcheng. Corrosion behavior and destructive mechanism of bridge concrete structure under chloride salt environment[J]. Journal of Architecture and Civil Engineering, 2008, 25(3): 32-36. [11] 张建仁, 王华, 彭建新, 等. 多因素腐蚀环境下混凝土结构的初锈时间模型及其可靠度分析[J]. 长沙理工大学学报(自然科学版), 2012, 9(1): 34-40. ZHANG Jianren, WANG Hua, PENG Jianxin, et al. Initiation time model and its reliability analysis for concrete, structures under multi-corrosive factors[J]. Journal of Changsha University of Science & Technology (Natural Science), 2012, 9(1): 34-40. [12] 高扬, 王小惠, 王菁, 等. 疲劳荷载和环境腐蚀作用下环氧涂层钢筋混凝土试件的耐久性研究[J]. 四川建筑科学研究, 2015, 41(6): 24-30. GAO Yang, WANG Xiaohui, WANG Jing, et al. Durability behaviour of epoxy-coated reinforcing concrete test specimens under fatigue load and environmental attacks[J]. Sichuan Building Science, 2015, 41(6): 24-30. [13] 郭进军, 韩菊红, 卢燕. 混合腐蚀环境下改性混凝土的力学性能[J]. 建筑材料学报, 2013, 16(2): 330-334. GUO Jinjun, HAN Juhong, LU Yan. Mechanical properties of modified concrete exposed to composite corrosive environment[J]. Journal of Building Materials, 2013, 16(2): 330-334. [14] 陈迅捷, 欧阳幼玲, 钱文勋, 等. 不同环境中杂散电流对钢筋混凝土腐蚀影响[J]. 水利水运工程学报, 2014(2): 33-37. CHEN Xunjie, OUYANG Youling, QIAN Wenxun, et al. Influences of stray current on corrosion behaviors of reinforcing steel bar in concrete placed in different environments[J]. Hydro-Science and Engineering, 2014(2): 33-37. [15] 牛建刚, 胡伟勋, 杨鹏飞. 二氧化硫腐蚀对混凝土性能影响试验研究[J]. 硅酸盐通报, 2016, 35(1): 44-51. NIU Jiangang, HU Weixun, YANG Pengfei. Experimental investigation on the influence of sulfur dioxide to concrete performance[J]. Bulletin of the Chinese Ceramic Society, 2016, 35(1): 44-51. [16] 蔡绍祥, 马茜茜, 王新洲, 等. 基于洋麻纤维/聚丙烯/橡胶板的复合板材制备工艺研究[J]. 林产工业, 2018, 55(12): 10-15. CAI Shaoxiang, MA Xixi, WANG Xinzhou, et al. Study on the process of preparing composite plates of kenaf fiber/polypropylene/rubber plate[J]. China Forest Products Industry, 2018, 55(12): 10-15. [17] 王立多, 赵梓年. 聚丙烯/亚麻纤维复合材料的性能研究[J]. 林产工业, 2009, 46(3): 14-16. WANG Liduo, ZHAO Zinian. Study on properties of PP/FF composite[J]. China Forest Products Industry, 2009, 46(3): 14-16. [18] 高桂海, 熊梅, 钱波. 不同外掺纤维增强排水沥青混合料性能研究[J]. 中外公路, 2019, 39(6): 182-187.GAO Guihai, XIONG Mei, QIAN Bo. Research on performance of drainage asphalt pavement reinforced with different fibers[J]. Journal of China & Foreign Highway, 2019, 39(6): 182-187. [19] 武越锋, 马昆林, 黄正华, 等. 酸性环境对不同材料组成混凝土侵蚀深度的试验研究[J]. 中外公路, 2019, 39(4): 224-228. WU Yuefeng, MA Kunlin, HUANG Zhenghua, et al. Experimental study on corrosion depth of concrete made of variety materials under acidic environment[J]. Journal of China & Foreign Highway, 2019, 39(4): 224-228. [20] 熊辉, 刘洪辉. 掺钢纤维和矿渣的高性能再生混凝土性能研究[J]. 中外公路, 2020, 40(1): 206-211. XIONG Hui, LIU Honghui. Study on properties of high performance recycled concrete mixed with steel fiber and slag[J]. Journal of China & Foreign Highway, 2020, 40(1): 206-211. [21] 张洪亮, 王黎, 赵金东. 盐渍土地区混凝土结构的耐硫酸盐腐蚀研究[J]. 中外公路, 2016, 36(3): 317-321. ZHANG Hongliang, WANG Li, ZHAO Jindong. Study on sulfate corrosion resistance of concrete structure in saline soil area[J]. Journal of China & Foreign Highway, 2016, 36(3): 317-321.

Share

COinS