Abstract
In order to develop high-viscosity modified asphalt that meets the technical requirements of JTG/T 3350-03-2020 Technical Specifications for Design and Construction of Porous Asphalt Pavement, the influence of modifiers and stabilizers on the performance of high-viscosity modified asphalt was studied by using Sinopec Donghai asphalt as the base material through control variable method. The asphalt modification process was optimized by a uniform design test, and the road performance of the modified asphalt with high viscosity was evaluated by PAC-13 gradation. The results show that the high-viscosity modified asphalt prepared by Donghai asphalt through the wet process can fully meet the index requirements, and its dynamic viscosity at 60 °C is greater than 5 × 104 Pa·s and can be customized according to demand. Meanwhile, its Brookfield viscosity at 170 °C is low, which is conducive to uniform mixing of the mixture. The self-developed MAW-2 stabilizer can not only make the storage stability of the high-viscosity modified asphalt meet the requirements of the standard but also cooperate with the polymer modifier to improve the dynamic viscosity of the asphalt and its high temperature property. When the void ratio of the mixture is 20.3%, its Marshall stability can reach 12.7 kN, and the flyaway loss in the Cantabro test and flooding test is low at 20 °C, indicating good high temperature stability, which can effectively prevent the stone flying and other problems of the drainage asphalt pavement.
Publication Date
1-18-2024
DOI
10.14048/j.issn.1671-2579.2022.06.042
First Page
220
Last Page
225
Submission Date
May 2025
Recommended Citation
Xiaosheng, GUO; Li, FU; Jiaohe, GUO; Keqi, WANG; and Jiyan, LI
(2024)
"Study on Preparation and PAC-13 Road Performance of High Viscosity Modified Asphalt,"
Journal of China & Foreign Highway: Vol. 42:
Iss.
6, Article 42.
DOI: 10.14048/j.issn.1671-2579.2022.06.042
Available at:
https://zwgl1980.csust.edu.cn/journal/vol42/iss6/42
Reference
[1] 戴妍娇, 焦胜, 丁国胜, 等. 近十年海绵城市建设研究评述与展望[J]. 现代城市研究, 2018, 33(8): 77-87. DAI Yanjiao, JIAO Sheng, DING Guosheng, et al. Review and prospect of sponge city construction in recent ten years[J]. Modern Urban Research, 2018, 33(8): 77-87. [2] 交通运输部公 路 科 学 研 究 院 . 排 水 沥 青 路 面 设 计 与 施 工 技术规范:JTG/T 3350-03—2020[S] . 北 京 : 人 民 交 通 出版社股份有限公司 ,2020. [2] Research Institute of Highway, Ministry of Transport. Technical Specifications for Design and Construction of Drainage Asphalt Pavements: JTG/T 3350-03–2020 [S]. Beijing: People's Communications Press Co., Ltd., 2020. [3] 司中向. 聚合物硫磺改性沥青性能测试与评价[J]. 石油沥青, 2015, 29(4): 52-55. SI Zhongxiang. Performance test and evaluation of sulfur polymer modified asphalt[J]. Petroleum Asphalt, 2015, 29(4): 52-55. [4] 袁中玉, 张文刚, 贾致荣, 等. 基于硫化机理的直投式乙烯-丁二烯-苯乙烯嵌段共聚物改性沥青稳定剂配方[J]. 科学技术与工程, 2018, 18(13): 304-309. YUAN Zhongyu, ZHANG Wengang, JIA Zhirong, et al. SBS modified asphalt stabilizer formula based on vulcanization mechanism[J]. Science Technology and Engineering, 2018, 18(13): 304-309. [5] 张国秋, 王文璇. 均匀试验设计方法应用综述[J]. 数理统计与管理, 2013, 32(1): 89-99. ZHANG Guoqiu, WANG Wenxuan. A citation review on the uniform experimental design[J]. Journal of Applied Statistics and Management, 2013, 32(1): 89-99. [6] 袁野, 杨成柱, 陈彦忠. 玛瑞原油生产和易性高黏高弹沥青的研究[J]. 石油沥青, 2018, 32(4): 51-53.YUAN Ye, YANG Chengzhu, CHEN Yanzhong. Study on producing workability high-viscosity high-elasticity asphalt derived from merry crude oil[J]. Petroleum Asphalt, 2018, 32(4): 51-53. [7] 刘克非, 朱俊材, 张雪飞, 等. 氧化石墨烯改性沥青性能评价及其OGFC混合料路用性能[J]. 长安大学学报(自然科学版), 2020, 40(1): 40-48. LIU Kefei, ZHU Juncai, ZHANG Xuefei, et al. Performance evaluation of graphene oxide modified asphalt and pavement performance of OGFC mixtures[J]. Journal of Chang’an University (Natural Science Edition), 2020, 40(1): 40-48. [8] 王明灿. SBS改性沥青稳定性研究[D]. 西安: 长安大学, 2014. WANG Mingcan. Study on stability of SBS modified asphalt[D]. Xi’an: Changan University, 2014. [9] HOU X D, LV S T, CHEN Z, et al. Applications of Fourier transform infrared spectroscopy technologies on asphalt materials[J]. Measurement, 2018, 121: 304-316. [10] 徐志荣, 陈忠达, 常艳婷, 等. 改性沥青SBS含量的红外光谱分析[J]. 长安大学学报(自然科学版), 2015, 35(2): 7-12. XU Zhirong, CHEN Zhongda, CHANG Yanting, et al. Application of infrared spectroscopy to detect the dosage of SBS in modified asphalt[J]. Journal of Chang’an University (Natural Science Edition), 2015, 35(2): 7-12. [11] 郭小圣, 郭皎河, 李志军, 等. 红外光谱法表征SBS改性沥青研究进展[J]. 中国胶粘剂, 2019, 28(7): 57-62. GUO Xiaosheng, GUO Jiaohe, LI Zhijun, et al. Progress in characterization of SBS modified asphalt by infrared spectroscopy[J]. China Adhesives, 2019, 28(7): 57-62. [12] 贾利强, 刘俊斌, 李平. 高黏改性沥青的开发与性能评价[J]. 中外公路, 2020, 40(4): 218-224. JIA Liqiang, LIU Junbin, LI Ping. Development and performance evaluation of high viscosity modified asphalt[J]. Journal of China & Foreign Highway, 2020, 40(4): 218-224.