Abstract
In view of the problems caused by rigid pavement discontinuity at airports, a finite difference numerical analysis model was established considering pavement structure, joint, soil foundation, and the discontinuity body, and the influence of discontinuity size on pavement under different aircraft load positions and joint load transfer efficiencies was studied. The influence of discontinuity on the service life of pavement was analyzed by comparing Chinese and foreign codes. The results show that the bending of airport pavement structure caused by discontinuity is obviously affected by the temporal and spatial effects of wheel loads, and different displacement modes will be induced by discontinuity when the aircraft is located at different positions on the pavement. The bending tensile stress caused by wheel load in the upper part of the discontinuity area can reach two times that in the continuity area. The combined action of landing gear multi-wheel load and pavement discontinuity can significantly increase pavement stress, which leads to serious discontinuity damage. Improving the joint load transfer capacity has a positive effect on improving the influence of pavement resistance to discontinuity, and the initial discontinuity of pavement has the most obvious influence on its service life. The fatigue failure of the airport pavement structure is not only related to the surface concrete but also affected by the structural condition index of the base, soil foundation, and pavement. If only the fatigue failure of concrete structure is considered, the service life of airport pavement may be overestimated. In distress control, in addition to treating the discontinuity area, the joint load transfer capacity should be evaluated and enhanced to improve the overall performance of the airport pavement.
Publication Date
1-18-2024
DOI
10.14048/j.issn.1671-2579.2022.06.008
First Page
47
Last Page
52
Submission Date
May 2025
Recommended Citation
Xuan, DAI; Jing, CAI; Xiangxiang, LI; and Qi, YU
(2024)
"Influence of Void Size Beneath Airport Concrete Pavement and Pavement Life Analysis,"
Journal of China & Foreign Highway: Vol. 42:
Iss.
6, Article 8.
DOI: 10.14048/j.issn.1671-2579.2022.06.008
Available at:
https://zwgl1980.csust.edu.cn/journal/vol42/iss6/8
Reference
[1] 国洋. 机场刚性道面板底脱空定量分析和寿命预估[D]. 西安: 长安大学, 2019. GUO Yang. Quantitative analysis and life prediction of void at the bottom of airport rigid pavement slab[D]. Xi’an: Changan University, 2019. [2]王显祎, 凌建明. 水泥混凝土机场道面板角脱空判定分析[J]. 同济大学学报(自然科学版), 2007, 35(5): 612-616. WANG Xianyi, LING Jianming. Void identifying under Airport Portland cement concrete pavement corner[J]. Journal of Tongji University (Natural Science), 2007, 35(5): 612-616. [3]张罗利, 蔡良才. 基于隋性点理论的机场道面脱空评定方法研究[J]. 路基工程, 2009(2): 153-155. ZHANG Luoli, CAI Liangcai. Study on methods of assessing the cavity of pavement in airport based on theory of inertial points[J]. Subgrade Engineering, 2009(2): 153-155. [4]谭悦, 凌建明, 袁捷, 等. 脱空对机场水泥混凝土道面荷载应力的影响[J]. 同济大学学报(自然科学版), 2010, 38(4): 552-556, 568. TAN Yue, LING Jianming, YUAN Jie, et al. Influence of voids to loading stresses of airport cement concrete pavement[J]. Journal of Tongji University (Natural Science), 2010, 38(4): 552-556, 568. [5]戚春香, 崔晓云, 杨简. 脱空对机场道面板接缝传荷能力影响分析[J]. 科学技术与工程, 2016, 16(22): 282-286, 290. QI Chunxiang, CUI Xiaoyun, YANG Jian. The analysis of void slab on airport pavement[J]. Science Technology and Engineering, 2016, 16(22): 282-286, 290. [6] 程国勇, 王翠玲, 郭志光. 机场道面脱空范围定量分析模型研究[J]. 公路交通科技, 2014, 31(9): 1-5, 12.CHENG Guoyong, WANG Cuiling, GUO Zhiguang. Research on quantitative analysis model of void airport pavement slab[J]. Journal of Highway and Transportation Research and Development, 2014, 31(9): 1-5, 12. [7] 黄勇, 袁捷, 谭悦, 等. 机场水泥混凝土道面脱空判定及影响[J]. 同济大学学报(自然科学版), 2012, 40(6): 861-866.HUANG Yong, YUAN Jie, TAN Yue, et al. Identification of void beneath airport cement concrete pavement and its influence[J]. Journal of Tongji University (Natural Science), 2012, 40(6): 861-866. [8] 同济大学.民用机场道面评价管理技术规范:MH/T 5024—2019[S].北京:中国民航出版社,2019. [8] 同济大学. 民用机场道面评价管理技术规范: MH/T 5024—2019[S]. 北京: 中国民航出版社, 2019.Specification for pavement evaluation and management of civil airports: MH/T 5024—2019[S]. , 2019. [9] 陈忠. 探地雷达技术在检测路面内部质量中的应用研究[J]. 中外公路, 2017, 37(2): 64-66. CHEN Zhong. Research on the application of ground penetrating radar technology in detecting the internal quality of pavement[J]. Journal of China & Foreign Highway, 2017, 37(2): 64-66. [10] 彭永恒, 谭忆秋, 张肖宁. 弹性地基接缝板声振法脱空判定[J]. 岩土力学, 2005, 26(12): 1981-1986. PENG Yongheng, TAN Yiqiu, ZHANG Xiaoning. Void identification of jointed slab on elastic foundation by acoustic vibration[J]. Rock and Soil Mechanics, 2005, 26(12): 1981-1986. [11] 吴秋霜, 王齐仁, 皮海康. 水泥混凝土路面脱空的探地雷达图像特征分析[J]. 煤田地质与勘探, 2018, 46(4): 181-185.WU Qiushuang, WANG Qiren, PI Haikang. Analysis on the image features of ground penetrating radar for cavity of concrete pavement[J]. Coal Geology & Exploration, 2018, 46(4): 181-185. [12] 问鹏辉, 王朝辉, 张磊. 基于注浆模拟的道路基层碱激发材料加固效果研究[J]. 硅酸盐通报, 2019, 38(1): 276-282. WEN Penghui, WANG Chaohui, ZHANG Lei. Reinforcement effect of road base alkali-activated material based on grouting simulation[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(1): 276-282. [13] 肖春发, 罗卫, 粟宋来, 等. 水泥路面板加铺沥青面层后板底脱空检测及评价方法[J]. 中外公路, 2020, 40(1): 52-55. XIAO Chunfa, LUO Wei, SU Songlai, et al. Detection and evaluation method of separation at bottom of cement pavement with asphalt pavement slab[J]. Journal of China & Foreign Highway, 2020, 40(1): 52-55. [14] 廖方方. 基于板底脱空演化时程分析水泥路面疲劳寿命研究[D]. 西安: 西安建筑科技大学, 2017. LIAO Fangfang. Study on fatigue life of cement pavement based on time history analysis of void evolution at the bottom of slab[D]. Xi’an: Xi’an University of Architecture and Technology, 2017. [15] 张献民,陈新春,李少波.基于国际平整度指数 IRI的飞机动载系数分析[J].南京航空航天大学学报,2016, 48(1) :136-142. [15] Zhang Xianmin, Chen Xinchun, Li Shaobo. Analysis of Aircraft Dynamic Load Coefficient Based on International Roughness Index (IRI) [J]. Journal of Nanjing University of Aeronautics and Astronautics, 2016, 48(1): 136–142. [16] 王乾. 基于板底脱空的水泥混凝土路面检测、处治与力学行为研究[D]. 西安: 长安大学, 2009. WANG Qian. Study on detection, treatment and mechanical behavior of cement concrete pavement based on slab bottom void[D]. Xi’an: Changan University, 2009. [17] 中国民用航空局. 民用机场水泥混凝土道面设计规范: MH/T 5004—2010[S]. 北京: 中国民航出版社, 2010.▇Specifications for Airport Cement Concrete Pavement Design: MH/T 5004—2010[S]. , 2010. [18] WANG Q, DAVIS J. Airport pavement groove identification and analysis at NAPTF[J]. Advanced Materials Research, 2013, 723: 1003-1010. [19] 吴爱红,蔡良才,顾强康,等.适应未来大型飞机的水泥混凝土道面设计方法[J].北京航空航天大学学报,2011,37(9) :1 169-1 175. [19] Wu Aihong, Cai Liangcai, Gu Qiangkang, et al. Cement Concrete Pavement Design Method Adapted for Future Large Aircraft [J]. Journal of Beijing University of Aeronautics and Astronautics, 2011, 37(9): 1169–1175. [20] FAA. Stands for Airport Pavement Design and Evaluations,AC150/5320-6D[R].USA: Department of Transportation,1995.