•  
  •  
 

Abstract

Thin-walled hollow piers are widely used in high-pier and long-span continuous rigid-frame bridges. Solar radiation-induced displacements at the tops of ultra-high thin-walled hollow piers can negatively affect the structural alignment and stress during construction and post-construction phases. Based on a 180 m high thin-walled hollow pier of a large bridge in Shaanxi Province, this paper analyzes the temperature field and pier-top displacement using data collected during two 24-hour periods: August 28-29 and October 11-12. The temperature field and pier-top displacement patterns over time were studied using finite element analysis. The results show that the temperature difference between the north and south pier walls is significantly influenced by ambient temperature and diurnal temperature variations. In August, with high ambient temperatures and small diurnal variations, the wall temperature difference is smaller, resulting in smaller pier-top displacements. In October, with lower ambient temperatures and larger diurnal variations, the wall temperature difference is greater, leading to larger pier-top displacements. Pier-top displacement follows a pattern consistent with the temperature difference between the sunlit and shaded pier walls. At a height of 180 m, a temperature difference of 8 °C between the walls causes a maximum pier-top displacement of 52.6 mm. Displacements calculated using the finite element method and code-based methods align well with measured values, demonstrating high accuracy.

Publication Date

5-11-2023

DOI

10.14048/j.issn.1671-2579.2023.02.015

First Page

85

Last Page

90

Submission Date

March 2025

Reference

[1] CHEN Z W, ZHAI W M. Theoretical method of determining pier settlement limit value for China’s high-speed railway bridges considering complete factors[J]. Engineering Structures, 2020, 209: 109998. [2] ZHAO L. Influence of cold wave on temperature and stress fields of cylindrical concrete hollow pier[J]. IOP Conference Series: Earth and Environmental Science, 2019, 267(3): 032065. [3] WANG Y H, ZOU Y S, LI C J, et al. Analytical methods for temperature field and temperature stress of column pier under solar radiation[J]. Mathematical Problems in Engineering, 2015, 2015: 278072. [4] SUN J C, ZHANG Z L, XIAO Q Y. Experimental research on the temperature field of high and hollow-thin pier[J]. Applied Mechanics and Materials, 2012, 256/257/258/259: 714-718. [5] WU Y F, SUN Y Y. Influence of reinforcement on temperature and stress of hollow pier[J]. Advanced Materials Research, 2012, 446/447/448/449: 1319-1324. [6] 吴斌, 林志华, 曾志平, 等. 日温下高铁桥墩位移与钢轨变形的映射关系[J]. 铁道工程学报, 2017, 34(11): 51-56. WU Bin, LIN Zhihua, ZENG Zhiping, et al. Mapping relationship between the bridge pier’s displacement and rail deformation of high-speed railways under the influence of sunshine temperature[J]. Journal of Railway Engineering Society, 2017, 34(11): 51-56. [7] 戴公连, 唐宇, 梁金宝. 高速铁路高墩极值温度变形研究[J]. 铁道学报, 2018, 40(7): 109-114. DAI Gonglian, TANG Yu, LIANG Jinbao. Study on extreme temperature deformation of tall-pier for high-speed railway[J]. Journal of the China Railway Society, 2018, 40(7): 109-114. [8] 任翔. 混凝土桥塔温度场的时变分析及温度梯度模式研究[J]. 铁道标准设计, 2012, 56(6): 40-45. REN Xiang. Time-varying analysis on temperature field and study on temperature gradient model for concrete bridge tower[J]. Railway Standard Design, 2012, 56(6): 40-45. [9] 任翔, 佟阳, 何青, 等. 薄壁箱形混凝土桥塔温度应力场分析[J]. 广西大学学报(自然科学版), 2011, 36(1): 121-127. REN Xiang, TONG Yang, HE Qing, et al. Thermal stress fields of thin-walled box girder concrete bridge tower[J]. Journal of Guangxi University (Natural Science Edition), 2011, 36(1): 121-127. [10] 陈建平, 戴桂华, 李德建. 酉水大桥日照温度对斜交高墩施工线形影响及其控制方法研究[J]. 公路工程, 2013, 38(5): 13-17, 66. CHEN Jianping, DAI Guihua, LI Dejian. Research of sunlight temperature influence on high skew pier’s line shape and controlling method of Youshui bridge[J]. Highway Engineering, 2013, 38(5): 13-17, 66. [11] 柏华军. 高速铁路大高差桥墩竖向温度变形对行车舒适性和安全性影响研究[J]. 铁道标准设计, 2019, 63(10): 81-88. BAI Huajun. Influence of vertical temperature deformation of high-speed railway bridge pier of large height difference on riding comfort and safety[J]. Railway Standard Design, 2019, 63(10): 81-88. [12] 李豪,张方.薄壁空心高墩日照温度场试验及数值模拟[J].西南公路,2018(3):164-169. LI Hao,ZHANG Fang. Test and numerical simulation of sunlight temperature field of thin-walled hollow high pier[J]. Southwest Highway,2018(3):164-169. [13] 唐峰, 李德建, 安里鹏. 日照辐射对高墩桥梁墩身线形影响与控制研究[J]. 铁道科学与工程学报, 2016, 13(10): 1970-1976. TANG Feng, LI Dejian, AN Lipeng. Researchof solar radiation influence on pier’s line shape and alignment monitoring of high-pier bridge[J]. Journal of Railway Science and Engineering, 2016, 13(10): 1970-1976. [14] 陈贤俊, 姚彬, 李国平. 空心高桥墩日照时变温度场及温度效应研究[J]. 上海公路, 2019(1): 44-48, 55, 5. CHEN Xianjun, YAO Bin, LI Guoping. Study on sunshine time-dependent temperature field and temperature effect of high hollow piers[J]. Shanghai Highways, 2019(1): 44-48, 55, 5. [15] 雷江. 刚构-连续箱形梁特大桥的混凝土箱形截面温度场有限元分析[J]. 公路工程, 2018, 43(2): 187-191, 245. LEI Jiang. Finite element analysis of concrete box sectional temperature field of frame bridge-continuous box girder[J]. Highway Engineering, 2018, 43(2): 187-191, 245. [16] 中交公路规划设计院有限公司. 公路桥涵设计通用规范: JTG D60—2015[S]. 北京: 人民交通出版社, 2015. CCCC Highway Consultants Co.,Ltd..General specifications for design of highway bridges and culverts: JTG D60—2015[S]. Beijing: China Communications Press, 2015. [17]中交一公局集团有限公司 .公路桥涵施工技术规范 :JTG/T3650—2020[S].北京:人民交通出版社股份有限公司,2020. CCCC First Highway Consultants Co., Ltd.. Technical Specifications for Construction of Highway Bridges and Culverts: JTG/T 3650—2020[S]. Beijing: China Communications Press Co., Ltd, 2020. [18] 铁道部第二勘测设计院. 铁路柔性墩桥技术规范: TB 10052—1997[S]. 北京: 中国铁道出版社, 1997. The Second Railways Survey and Design Institute.Ministry of Railways of the People’s Republic of China. Technical specification for flexible pier railway bridge: TB 10052—1997[S]. Beijing: China Railway Publishing House, 1997.

Share

COinS