Abstract
To understand the gas migration patterns and ventilation disaster prevention techniques during tunnel construction, this paper uses a real tunnel as the engineering context. A 3D transient ventilation physical model was established using Ansys Fluent, and the effects of ventilation on gas concentration were analyzed in combination with on-site monitoring data. The results show that the uneven diffusion of gas and airflow is prominent. Gas concentration and wind speed stabilize at a distance of 120 m from the tunnel face as ventilation time increases. During gas monitoring and prevention, special attention should be paid to the area between the tunnel face and the second lining formwork to ensure gas concentration does not exceed limits. After blasting, the gas concentration at the tunnel face continuously increases, peaking after approximately 15 minutes of ventilation. After 30 minutes of ventilation, the gas concentration stabilizes and falls within the allowable range for construction. Proper control of ventilation time and volume, along with enhanced ventilation in critical areas such as the tunnel arch foot and bottom plate, ensures the safety of tunnel construction.
Publication Date
5-11-2023
DOI
10.14048/j.issn.1671-2579.2023.02.029
First Page
164
Last Page
172
Submission Date
March 2025
Recommended Citation
Zhongqi, WANG; Zhi, LIN; Sen, FENG; Hongyun, YANG; Xiang, CHEN; and Jiang, LIU
(2023)
"Research on gas migration and ventilation disaster prevention in highway tunnel,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
2, Article 29.
DOI: 10.14048/j.issn.1671-2579.2023.02.029
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss2/29
Reference
[1] 张东明, 刘见中. 煤矿采空区瓦斯流动分布规律分析[J]. 中国地质灾害与防治学报, 2003, 14(1): 81-84. ZHANG Dongming, LIU Jianzhong. Regularity on the distribution of gas moving in gob area of coal mine[J]. The Chinese Journal of Geological Hazard and Control, 2003, 14(1): 81-84. [2] 王林涛, 刘启蒙, 刘瑜. 不同倾角裂隙粉砂岩扩展过程试验与模拟[J]. 中国科技论文, 2020, 15(1): 89-93. WANG Lintao, LIU Qimeng, LIU Yu. Experiment and simulation of mining-induced crack propagation process on coal seam roof[J]. China Sciencepaper, 2020, 15(1): 89-93. [3] 王贯国, 魏东旭, 林志军, 等. 瓦斯隧道工程地质勘察[J]. 中外公路, 2021, 41(S2): 162-164. WANG Guanguo, WEI Dongxu, LIN Zhijun, et al. Engineering geological investigation of gas tunnel[J]. Journal of China & Foreign Highway, 2021, 41(S2): 162-164. [4] 薛彦军, 刘奇, 房师涛, 等. 低瓦斯隧道大直径土压平衡盾构快速分体始发技术[J]. 中外公路, 2022, 42(1): 183-186. XUE Yanjun, LIU Qi, FANG Shitao, et al. Fast separate launching technology on large-diameter earth pressure balance shield in low gas tunnel[J]. Journal of China & Foreign Highway, 2022, 42(1): 183-186. [5] 张永成. 高瓦斯隧道瓦斯监测专项方案设计研究[J]. 国防交通工程与技术, 2019, 17(S1): 26-29. ZHANG Yongcheng. Study on design of special scheme for gas monitoring in high gas tunnel[J]. Traffic Engineering and Technology for National Defence, 2019, 17(S1): 26-29. [6] 蒋曙光, 王省身. 综放采场流场及瓦斯运移三维模型试验[J]. 中国矿业大学学报, 1995, 24(4): 85-91. JIANG Shuguang, WANG ShengShen. Study on 3-d modelling of air flow and methane transfer in top-coal drawing fields[J]. Journal of China University of Mining & Technology, 1995, 24(4): 85-91. [7] 冯雪. 隧道断面与瓦斯监测系统[D]. 成都: 西南交通大学, 2018. FENG Xue. Tunnel section and gas monitoring system[D]. Chengdu: Southwest Jiaotong University, 2018. [8] 史吉辉, 李庆超, 李强, 等. 页岩气储层定向射孔压裂裂缝转向影响因素分析[J]. 中国科技论文, 2020, 15(5): 528-536. SHI Jihui, LI Qingchao, LI Qiang, et al. Factors affecting reorientation of hydraulically-induced fracture during fracturing by oriented perforations in shale reservoirs[J]. China Sciencepaper, 2020, 15(5): 528-536. [9] 林永贵, 陈晓裕. 莫洛瓦斯隧道通风设计[J]. 中外公路, 2014, 34(2):200-202. LIN Yonggui, CHEN Xiaoyu. Ventilation design of Mo lovas tunnel[J]. Journal of China & Foreign Highway, 2014, 34(2):200-202. [10] 冯森. 公路隧道瓦斯工区类别划分指标与方法研究[D]. 重庆: 重庆交通大学, 2021. FENG Sen. Study on classification index and method of gas work area in highway tunnel[D]. Chongqing: Chongqing Jiaotong University, 2021. [11] 郝俊锁, 陈中方, 沈殿臣, 等. 瓦斯隧道通风在线监测与动态分析预警[J]. 现代隧道技术, 2012, 49(4): 32-36, 55. HAO Junsuo, CHEN Zhongfang, SHEN Dianchen, et al. On-line monitoring, dynamic analysis and early warning of gas tunnel ventilation status[J]. Modern Tunnelling Technology, 2012, 49(4): 32-36, 55. [12] 洪开荣. 我国隧道及地下工程近两年的发展与展望[J]. 隧道建设, 2017, 37(2): 123-134. HONG Kairong. Development and prospects of tunnels and underground works in China in recent two years[J]. Tunnel Construction, 2017, 37(2): 123-134. [13] 康小兵, 丁睿, 许模, 等. 高瓦斯隧道施工通风处理数值模拟分析[J]. 成都理工大学学报(自然科学版), 2012, 39(3): 311-316. KANG Xiaobing, DING Rui, XU Mo, et al. Numerical simulation for the ventilation in the construction of high gas tunnel[J]. Journal of Chengdu University of Technology (Science & Technology Edition), 2012, 39(3): 311-316. [14] 王锐, 田娇. 上覆煤层采空区对公路隧道的影响分析及处治技术[J]. 中外公路, 2019, 39(5): 194-197. WANG Rui, TIAN Jiao. Influence of overlaying coal goaf on highway tunnel and its treatment technology[J]. Journal of China & Foreign Highway, 2019, 39(5): 194-197. [15] 龙港, 黄飞, 李树清, 等. 大断面公路隧道穿越构造煤层瓦斯抽放技术研究[J]. 隧道建设(中英文), 2022, 42(S1): 486-492. LONG Gang, HUANG Fei, LI Shuqing, et al. Study on gas drainage technology of large section highway tunnel crossing structural coal seam[J]. Tunnel Construction, 2022, 42(S1): 486-492. [16] 戎有龙. 高瓦斯公路隧道穿越薄煤层群安全施工技术研究[J]. 山西建筑, 2022, 48(6): 148-151. RONG Youlong. Research on safe construction technology of high gas road tunnel through thin coal seam group[J]. Shanxi Architecture, 2022, 48(6): 148-151. [17] 高建良, 王春霞. 倾斜巷道中风流方向对瓦斯分布与积聚的影响[J]. 安全与环境学报, 2010, 10(2): 180-183. GAO Jianliang, WANG Chunxia. Effects of the air-flow direction on the distribution and accumulation of the gas in the coalmine tunnel[J]. Journal of Safety and Environment, 2010, 10(2): 180-183. [18] 王海桥, 施式亮, 刘荣华, 等. 独头巷道附壁射流通风流场数值模拟研究[J]. 煤炭学报, 2004, 29(4): 425-428. WANG Haiqiao, SHI Shiliang, LIU Ronghua, et al. Numerical simulation study on ventilation flow field of wall-attached jet in heading face[J]. Journal of China Coal Society, 2004, 29(4): 425-428. [19] 孙忠强, 方宝君. 大断面公路隧道施工风流分布规律研究[J]. 中国安全生产科学技术, 2016, 12(2): 154-158. SUN Zhongqiang, FANG Baojun. Study on airflow distribution regularities in construction of large section highway tunnel[J]. Journal of Safety Science and Technology, 2016, 12(2): 154-158. [20] 彭佩, 熊艳. 公路隧道施工压入式通风流场及瓦斯分布规律研究[J]. 公路交通技术, 2015, 31(2): 117-121, 126. PENG Pei, XIONG Yan. Research on flow fields and gas distribution laws of press-in ventilating and gas in construction of highway tunnels[J]. Technology of Highway and Transport, 2015, 31(2): 117-121, 126. [21]郑仕跃,朱海明,关瑞士,等.公路穿零净距煤层组瓦斯突出危险性预测及效验施工方法 :广东省,CN115163171A[P].2022¬10¬11. ZHENG Shiyue,ZHU Haiming,GUAN Ruishi,et al. Prediction of gas protrusion danger and validation construction method for highway through zero clear distance coal seam group : Guangdong Province, CN115163171A [P].2022¬10¬11. [22]康卫,于海平,刘闯,等.高速公路瓦斯突出隧道超厚煤层水力压裂增透工艺 :广东省,CN111335939A[P].2020¬06¬26. KANG Wei,YU Haiping,LIU Gang,et al. Process of hydraulic fracturing to increase the penetration of ultra-thick coal seams in highway gas protruding tunnels : Guangdong Province, CN111335939A[P].2020¬06¬26. [23] 李勇. 基于PLC控制系统的矿井瓦斯浓度监控系统设计研究[J]. 煤炭与化工, 2020, 43(9): 69-70, 73. LI Yong. Study on the design of PLC-based gas concentration monitoring system for mines[J]. Coal and Chemical Industry, 2020, 43(9): 69-70, 73. [24] 李杰. 公路下伏急倾斜煤层采空区全充填压力注浆加固技术研究[J]. 中外公路, 2022, 42(3): 26-29. LI Jie. Analysis on reinforcement technology of full filling pressure grouting with goaf of steep coal seam under highway[J]. Journal of China & Foreign Highway, 2022, 42(3): 26-29. [25] 张超林, 王恩元, 许江, 等. 煤层瓦斯压力对瓦斯抽采效果的影响[J]. 采矿与安全工程学报, 2022, 39(3): 634-642. ZHANG Chaolin, WANG Enyuan, XU Jiang, et al. The influence of gas pressure on drainage effect in coal seam[J]. Journal of Mining & Safety Engineering, 2022, 39(3): 634-642.
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons