•  
  •  
 

Abstract

This paper utilizes discrete-continuum coupled numerical simulation to investigate the failure modes of karst cave roofs with varying spans under specific compaction energy levels. The relationship between the span of the cave roof and the compaction energy required to cause roof collapse is established, providing an estimation method for the maximum unsupported span of cave roofs within the subgrade area. Based on this, the stability of karst cave foundations under the influence of subgrade loads can be evaluated. Depending on the results, a double-layer reinforced continuous concrete slab can be installed in the pavement base to enhance stability and mitigate the risk of collapse from undisturbed karst caves. Finally, a dynamic compaction treatment method for highway subgrades in karst areas is summarized. Based on preliminary survey data, dynamic compaction is applied to large areas of the karst zone using specific compaction energy. During the process, collapsed karst caves are filled, while the stability of undisturbed karst caves is assessed. If stability checks fail, reinforcement measures are implemented in the pavement base layer. This method eliminates the need to identify all karst cave locations and their geometric characteristics, making it a cost-effective and efficient approach to mitigating collapse risks in karst area subgrades. The proposed method has significant potential for widespread application.

Publication Date

5-11-2023

DOI

10.14048/j.issn.1671-2579.2023.02.003

First Page

16

Last Page

21

Submission Date

March 2025

Reference

[1] 胡涛, 魏婷, 张超, 等. 强夯法处理娄新高速公路岩溶塌陷地基的现场试验研究[J]. 铁道科学与工程学报, 2014, 11(5): 118-124. HU Tao, WEI Ting, ZHANG Chao, et al. Experimental study on dynamic compaction method applied in Karst collapse foundation of Lou-Xin expressway[J]. Journal of Railway Science and Engineering, 2014, 11(5): 118-124. [2] 邹维列. 公路岩溶、软弱地层物探与缺水地区钻探新技术[J]. 中外公路, 2007, 27(4): 200-203. ZOU Weilie. New technology of geophysical exploration in karst and weak strata of highway and drilling in water shortage area [J]. Journal of China & Foreign Highway, 2007, 27(4): 200-203. [3] 李士友. 杭金衢高速公路溶洞发育区地基处理技术研究[D]. 杭州: 浙江大学, 2006. LI Shiyou. Study on foundation treatment technology in Karst cave development area of Hangjinqu Expressway[D]. Hangzhou: Zhejiang University, 2006. [4] 袁腾方. 岩溶区高速公路路基强夯处治技术及其稳定性分析[D]. 长沙: 湖南大学, 2018. YUAN Tengfang. Dynamic compaction treatment technology and its stability analysis of expressway subgrade in karst area. Changsha: Hunan University, 2018. [5] 蔡袁强, 陈超, 徐长节. 强夯加固回填土地基的三维数值模拟[J]. 岩土力学, 2007, 28(6): 1108-1112. CAI Yuanqiang, CHEN Chao, XU Changjie. Three-dimensional numerical simulation of dynamic compaction of backfilled soil[J]. Rock and Soil Mechanics, 2007, 28(6): 1108-1112. [6] 高政国, 杜雨龙, 黄晓波, 等. 碎石填筑场地强夯加固机制及施工工艺[J]. 岩石力学与工程学报, 2013, 32(2): 377-384. GAO Zhengguo, DU Yulong, HUANG Xiaobo, et al. Reinforcement mechanism and construction technology of broken stone fills by dynamic consolidation[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(2): 377-384. [7] 姚仰平, 张北战. 基于体应变的强夯加固范围研究[J]. 岩土力学, 2016, 37(9): 2663-2671. YAO Yangping, ZHANG Beizhan. Reinforcement range of dynamic compaction based on volumetric strain[J]. Rock and Soil Mechanics, 2016, 37(9): 2663-2671. [8] 刘城志. 红砂岩碎石土路基强夯加固工艺研究[J]. 公路与汽运, 2021(1): 63-66. LIU Chengzhi. Study on dynamic compaction reinforcement technology of red sandstone gravel soil subgrade [J]. Highways & Automotive Applications, 2021(1): 63-66. [9] JIA M C, YANG Y, LIU B, et al. PFC/FLAC coupled simulation of dynamic compaction in granular soils[J]. Granular Matter, 2018, 20(4): 76. [10] WANG J, JIANG Y H, OUYANG H Y, et al. 3D continuum-discrete coupling modeling of soil-hammer interaction under dynamic compaction[J]. Journal of Vibroengineering, 2019, 21(2): 348-359. [11] 肖超, 谭立新, 陈仁朋, 等. 考虑渣土特征的盾构施工力学动态耦合仿真研究[J]. 岩土工程学报, 2019, 41(6): 1108-1115. XIAO Chao, TAN Lixin, CHEN Renpeng, et al. Dynamic coupling simulation of shield construction mechanics considering characteristics of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1108-1115. [12] 马亚丽娜, 盛谦, 崔臻, 等. 基于三维离散–连续耦合方法的跨活动断裂隧洞错断破坏机制研究[J]. 岩土工程学报, 2018, 40(S2): 240-245. MA Yalina, SHENG Qian, CUI Zhen, et al. Disruption and destruction mechanism of cross-active fault tunnelsbased on 3D discrete-continuous coupling method [J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 240-245. [13] CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47-65. [14] BERTUZZI R, DOUGLAS K, MOSTYN G. Improving the GSI Hoek-Brown criterion relationships[J]. International Journal of Rock Mechanics and Mining Sciences, 2016, 89: 185-199. [15] 陈新, 廖志红, 李德建. 节理倾角及连通率对岩体强度、变形影响的单轴压缩试验研究[J]. 岩石力学与工程学报, 2011, 30(4): 781-789. CHEN Xin, LIAO Zhihong, LI Dejian. Experimental study of effects of joint inclination angle and connectivity rate on strength and deformation properties of rock masses under uniaxial compression[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(4): 781-789. [16] 戴自航, 范夏玲, 卢才金. 岩溶区高速公路路堤及溶洞顶板稳定性数值分析[J]. 岩土力学, 2014, 35(S1): 382-390. DAI Zihang, FAN Xialing, LU Caijin. Numerical analysis of stability of highway embankments andkarst cave roofs in karst region [J]. Rock and Soil Mechanics, 2014, 35(S1): 382-390. [17] 韩红艳, 吴燕舞, 黑亮, 等. 岩溶路基溶洞顶板稳定性分析[J]. 工程地质学报, 2012, 20(6): 1078-1082. HAN Hongyan, WU Yanwu, HEI Liang, et al. Stability analysis of Karst cave roof beneath highway subgrade[J]. Journal of Engineering Geology, 2012, 20(6): 1078-1082.

Share

COinS