Optimization study on indoor vibratory compaction curves of cement stabilized macadam
Abstract
To obtain well-defined secondary convex vibratory compaction curves and reduce the need for supplemental compaction point tests, this paper uses vibratory compaction tests for cement stabilized macadam in laboratory settings. Tests were conducted for two pavement sections along National Highway 110 (Hohhot to Bikeqi), exploring the influence of predefined moisture content intervals on vibratory compaction curves under varying cement dosages. The vibratory compaction curves were also compared with heavy compaction curves for analysis. The results show that the vibratory compaction curve is significantly influenced by the predefined moisture content intervals and cement dosage. For a moisture content interval of 1%, high cement dosages (>5%) resulted in clustering of test points as moisture content increased, whereas low cement dosages (≤5%) produced well-defined vibratory compaction curves. Conversely, with smaller moisture content intervals (0.5%), the curves consistently exhibited better secondary convex characteristics under reasonable cement dosages, allowing the maximum dry density and optimum moisture content of cement stabilized macadam to be quickly and accurately determined. Comparison with heavy compaction tests confirmed that the dry density of cement stabilized macadam under vibratory compaction is more sensitive to moisture content. An optimized method for drawing vibratory compaction curves for cement stabilized macadam in the laboratory is proposed. This research not only provides accurate control parameters for mix design under vibratory compaction but also fills a gap in the experience and methodology for drawing indoor vibratory compaction curves.
Publication Date
5-11-2023
DOI
10.14048/j.issn.1671-2579.2023.02.033
First Page
189
Last Page
194
Submission Date
March 2025
Recommended Citation
Youqiang, QIU and Liujun, ZHANG
(2023)
"Optimization study on indoor vibratory compaction curves of cement stabilized macadam,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
2, Article 33.
DOI: 10.14048/j.issn.1671-2579.2023.02.033
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss2/33
Reference
[1] 李明杰, 蒋应军, 张俊杰, 等. 半刚性基层材料振动试验方法[J]. 交通运输工程学报, 2010, 10(1): 6-12. LI Mingjie, JIANG Yingjun, ZHANG Junjie, et al. Vibration test method of semi-rigid base course material[J]. Journal of Traffic and Transportation Engineering, 2010, 10(1): 6-12. [2] 蒋应军, 曹帆, 陈浙江, 等. 垂直振动成型水泥稳定碎石疲劳特性及应用[J]. 长安大学学报(自然科学版), 2014, 34(4): 1-6. JIANG Yingjun, CAO Fan, CHEN Zhejiang, et al. Fatigue performance and application of cement stabilized macadam shaped with vertical vibration test method[J]. Journal of Chang’an University (Natural Science Edition), 2014, 34(4): 1-6. [3] 胡力群, 沙爱民. 室内振动压实机结构及利用振动法确定水泥稳定碎石压实标准应注意的问题[J]. 公路, 2010, 55(6): 132-135. HU Liqun, SHA Aimin. Structure of indoor vibration compactor and problems needing attention in determining compaction standard of cement stabilized macadam by vibration method[J]. Highway, 2010, 55(6): 132-135. [4] 李明杰. 水泥稳定碎石振动试验方法研究及应用[D]. 西安: 长安大学, 2010. LI Mingjie. Research and application of vibration test method for cement stabilized macadam[D]. Xi’an: Changan University, 2010. [5] WANG L, XIE X G, LUAN H. Influence of laboratory compaction methods on shear performance of graded crushed stone[J]. Journal of Materials in Civil Engineering, 2011, 23(10): 1483-1487. [6] 周娟, 李娟燕. 水泥稳定再生碎石混合料的振动试验研究[J]. 中外公路, 2019, 39(5): 250-256. ZHOU Juan, LI Juanyan. Experimental study on vibration test of recycled mixture with cement stabilized macadam[J]. Journal of China & Foreign Highway, 2019, 39(5): 250-256. [7] 王洪国, 苏纪壮, 张民, 等. 振动搅拌对掺铁尾矿砂水泥稳定碎石混合料的影响研究[J]. 硅酸盐通报, 2021, 40(12): 4209-4216. WANG Hongguo, SU Jizhuang, ZHANG Min, et al. Effect of vibration mixing on iron tailing cement stabilized macadam mixture[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(12): 4209-4216. [8] 王将, 龚辉, 郭娜娜, 等. 土石混合料的大型击实试验研究[J]. 公路, 2021, 66(1): 297-302. WANG Jiang, GONG Hui, GUO Nana, et al. Study on large-scale compaction test of soil-rock mixture[J]. Highway, 2021, 66(1): 297-302. [9] 邹海味, 熊越, 陈学军. 土石混合料的压实与力学性能研究[J]. 公路, 2019, 64(6): 32-38. ZOU Haiwei, XIONG Yue, CHEN Xuejun. Research on compaction and mechanical properties of earth-rock mixture[J]. Highway, 2019, 64(6): 32-38. [10] 孙雅珍, 李凯翔, 迟凤霞, 等. 基于含水率变化宕渣土石混合料回弹模量的试验研究[J]. 中外公路, 2017, 37(2): 223-227. SUN Yazhen, LI Kaixiang, CHI Fengxia, et al. Experimental study on resilience modulus of slag-stone mixture based on moisture content change[J]. Journal of China & Foreign Highway, 2017, 37(2): 223-227. [11] 薛振华, 关博文, 樊兴华. 掺玄武岩纤维水泥稳定再生碎石基层性能研究[J]. 中外公路, 2021, 41(5): 269-273. XUE Zhenhua, GUAN Bowen, FAN Xinghua. Research on road performance of cement stabilized reclaimed gravel base mixed with basalt fiber[J]. Journal of China & Foreign Highway, 2021, 41(5): 269-273. [12] 杨善东, 王笑风, 游鹏, 等. 土凝岩胶凝材料稳定碎石基层路用性能研究[J]. 中外公路, 2021, 41(6): 275-280. YANG Shandong, WANG Xiaofeng, YOU Peng, et al. Study on road performance of macadam base stabilized with soil stabilizer cementitious materials[J]. Journal of China & Foreign Highway, 2021, 41(6): 275-280. [13] 李明杰. 水泥稳定碎石强度影响因素的试验研究[J]. 公路交通科技, 2010, 27(4):6-11. LI Mingjie. Experimental study on influencing factors of strength of cement stabilized macadam[J]. Journal of Highway and Transportation Research and Development, 2010, 27(4):6-11. [14] 于新, 杜银飞. 考虑集料吸水率的水泥稳定碎石最大干密度及最佳含水量理论计算方法[J]. 公路交通科技, 2012, 29(3): 17-21. YU Xin, DU Yinfei. Theoretical calculation method of maximum dry density and optimum water content of cement stabilized macadam considering aggregate water absorptivity[J]. Journal of Highway and Transportation Research and Development, 2012, 29(3): 17-21. [15] 王龙, 解晓光, 于立泽. 成型方法对半刚性基层材料配合比设计的影响[J]. 公路交通科技, 2013, 30(2): 32-37. WANG Long, XIE Xiaoguang, YU Lize. Influence of different compacting methods on mix design of semi-rigid base materials[J]. Journal of Highway and Transportation Research and Development, 2013, 30(2): 32-37. [16] 交通运输部公路科学研究院. 公路路面基层施工技术细则: JTG/T F20—2015[S]. 北京: 人民交通出版社, 2015. Research Institute of Highway Ministry of Transport.Technical Guidelines for Construction of Highway Roadbases: JTG/T F20—2015[S]. Beijing: China Communications Press, 2015. [17] 交通运输部公路科学研究院.公路工程集料试验规程: JTG E42—2005[S]. 北京: 人民交通出版社, 2005. Research Institute of Highway Ministry of Transport. Test Methods of Aggregate for Highway Engineering: JTG E42—2005[S]. Beijing: China Communications Press, 2005. [18]交通运输部公路科学研究院 .公路工程无机结合料稳定材料试验规程 :JTGE51—2009[S].北京:人民交通出版社,2009. Research Institute of Highway Ministry of Transport.Test Methods of Materials Stabilized with Inorganic Binders for Highway Engineering: JTG E51—2009[S]. Beijing: China Communications Press, 2009.