Selection of phase change materials for asphalt pavement based on molecular dynamics simulation
Abstract
Phase change materials (PCMs) have significant application potential in temperature regulation for asphalt pavements. To select suitable PCMs for road applications, this paper utilizes molecular dynamics simulation to analyze the molecular behaviors of lauric acid and polyethylene glycol (PEG). Experimental studies were conducted to validate the simulation results. The results show that molecular dynamics simulation provides an efficient and convenient method for comparing the performance of PCMs. PEG outperforms lauric acid in terms of molecular density, cohesive energy density, solubility parameters, and thermal conductivity, making it more suitable as a phase change material for asphalt pavements.
Publication Date
5-11-2023
DOI
10.14048/j.issn.1671-2579.2023.02.034
First Page
195
Last Page
201
Submission Date
March 2025
Recommended Citation
Fujun, LIU; Xin, TIAN; Meichen, LIANG; and Meng, GUO
(2023)
"Selection of phase change materials for asphalt pavement based on molecular dynamics simulation,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
2, Article 34.
DOI: 10.14048/j.issn.1671-2579.2023.02.034
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss2/34
Reference
[1] 胡新顺. 关于公路工程沥青路面施工技术分析[J]. 绿色环保建材, 2019(3): 115. HU Xinshun. Analysis on construction technology of asphalt pavement in highway engineering[J]. Green Environmental Protection Building Materials, 2019(3): 115. [2] AMIRKHANIAN A N, XIAO F P, AMIRKHANIAN S N. Evaluation of high temperature rheological characteristics of asphalt binder with carbon nano particles[J]. Journal of Testing and Evaluation, 2011, 39(4): 583-591. [3] KHODAII A, FALLAH S, MOGHADAS NEJAD F. Effects of geosynthetics on reduction of reflection cracking in asphalt overlays[J]. Geotextiles and Geomembranes, 2009, 27(1): 1-8. [4] ELKASHEF M, WILLIAMS R C, COCHRAN E. Investigation of fatigue and thermal cracking behavior of rejuvenated reclaimed asphalt pavement binders and mixtures[J]. International Journal of Fatigue, 2018, 108: 90-95. [5] NUKUNYA B, ROQUE R, MANG T A, et al. Effect of aggregate structure on rutting potential of dense-graded asphalt mixtures[J]. Transportation Research Record: Journal of the Transportation Research Board, 2002, 1789(1): 136-145. [6] QIN Y H. A review on the development of cool pavements to mitigate urban heat island effect[J]. Renewable and Sustainable Energy Reviews, 2015, 52: 445-459. [7] “SKIP” BROWN N R. Solution for distressed pavements and crack reflection[J]. Transportation Research Record: Journal of the Transportation Research Board, 2003, 1819(1): 313-317. [8] SI W, ZHOU X Y, MA B, et al. The mechanism of different thermoregulation types of composite shape-stabilized phase change materials used in asphalt pavement[J]. Construction and Building Materials, 2015, 98: 547-558. [9] GUO J, XIANG H X, WANG Q Q, et al. Preparation of poly(decaglycerol-co-ethylene glycol) copolymer as phase change material[J]. Energy and Buildings, 2012, 48: 206-210. [10] ZALBA B, MARı́N J M, CABEZA L F, et al. Review on thermal energy storage with phase change: materials, heat transfer analysis and applications[J]. Applied Thermal Engineering, 2003, 23(3): 251-283. [11] GALLEGOS LAZCANO M A, YU W D. Thermal performance and flammability of phase change material for medium and elevated temperatures for textile application[J]. Journal of Thermal Analysis and Calorimetry, 2014, 117(1): 9-17. [12] JOHNSTON J H, GRINDROD J E, DODDS M, et al. Composite nano-structured calcium silicate phase change materials for thermal buffering in food packaging[J]. Current Applied Physics, 2008, 8(3/4): 508-511. [13] PASUPATHY A, VELRAJ R, SEENIRAJ R V. Phase change material-based building architecture for thermal management in residential and commercial establishments[J]. Renewable and Sustainable Energy Reviews, 2008, 12(1): 39-64. [14] ZHANG D, CHEN M Z, WU S P, et al. Preparation of expanded graphite/polyethylene glycol composite phase change material for thermoregulation of asphalt binder[J]. Construction and Building Materials, 2018, 169: 513-521. [15] KONG W B, LIU Z M, YANG Y Y, et al. Preparation and characterizations of asphalt/lauric acid blends phase change materials for potential building materials[J]. Construction and Building Materials, 2017, 152: 568-575. [16] REN J P, MA B, SI W, et al. Preparation and analysis of composite phase change material used in asphalt mixture by Sol–gel method[J]. Construction and Building Materials, 2014, 71: 53-62. [17] 龙振英. 相变材料在道路工程中的应用前景分析[J]. 中国新技术新产品, 2017(15):70-71. LONG Zhenying. Analysis on the application prospect of phase change materials in road engineering[J]. New Technology & New Products of China, 2017(15):70-71. [18] 李俊. 自调温沥青混合料性能研究[D]. 西安: 长安大学, 2012. LI Jun. Study on performance of self-regulating asphalt mixture[D]. Xi’an: Changan University, 2012. [19] 张一博, 朱洪洲, 李菁若, 等. 储热降温沥青路面用相变材料的选择[J]. 郑州大学学报(工学版), 2012, 33(3): 10-14, 18. ZHANG Yibo, ZHU Hongzhou, LI Jingruo, et al. Selection of phase change materials used in heat storage cooling asphalt pavement[J]. Journal of Zhengzhou University (Engineering Science), 2012, 33(3): 10-14, 18. [20] FELDMAN D, SHAPIRO M M, BANU D, et al. Fatty acids and their mixtures as phase-change materials for thermal energy storage[J]. Solar Energy Materials, 1989, 18(3/4): 201-216. [21] 张晖, 张秉坚, 梁世强, 等. 微孔中简单流体粘度的分子动力学模拟及关联模型[J]. 物理化学学报, 2003, 19(4): 352-355. ZHANG Hui, ZHANG Bingjian, LIANG Shiqiang, et al. Shear viscosity of simple fluids in porous media: molecular dynamic simulations and correlation models[J]. Acta Physico-Chimica Sinica, 2003, 19(4): 352-355. [22] 杨仕清, 张文旭, 彭斌, 等. 氢在Nd晶体中行为的分子动力学模拟[J]. 原子与分子物理学报, 2000, 17(2): 279-282. YANG Shiqing, ZHANG Wenxu, PENG Bin, et al. The simulation of the hydrogen motion in the Nd crystal by molecular dynamic[J]. Journal of Atomic and Molecular Physics, 2000, 17(2): 279-282. [23] 葛静远, 付可欣, 谢军, 等. DGEBA/OSC共混改性环氧树脂热力学性能的分子模拟与实验研究[J]. 绝缘材料, 2021, 54(3): 42-48. GE Jingyuan, FU Kexin, XIE Jun, et al. Molecular simulation and experimental study on thermodynamic properties of DGEBA/OSC blending modified epoxy resin[J]. Insulating Materials, 2021, 54(3): 42-48.