•  
  •  
 

Study on alkali excitation mechanism of large dosage slag fine powder

Abstract

To reveal the alkali excitation mechanism of high-dosage slag, this paper combines a three-factor, three-level orthogonal design with macro- and micro-performance tests and microstructure analysis. The effects of different activators, including Ca(OH)2, Na2SiO3, Na2SO4, and CaSO4, in single and dual combinations on the initial and final setting times, pore solution pH, and strength of concrete were explored. The results show that the impact on the strength of hardened paste of composite cementitious materials is ranked as: activator type > dosage > dual-mix ratio. The optimal dual-mix dosage is 4%, with the best combination being Ca(OH)2 and Na2SiO3 at a ratio of 5:1. Under the action of activators, the initial and final setting times of composite cementitious materials are reduced, and the pore solution pH values are higher than those of the control group. Macro- and micro-level results indicate that at 28 days of curing, the hardened paste achieves the highest hydration crystal phase compactness when the activator type is Ca(OH)2 and Na2SiO3, the dosage is 4%, and the dual-mix ratio is 5:1.

Publication Date

5-11-2023

DOI

10.14048/j.issn.1671-2579.2023.02.037

First Page

213

Last Page

218

Submission Date

March 2025

Reference

[1] 高丹盈, 王勤学, 李翔宇. 龄期和尺寸对纤维矿渣微粉混凝土抗压强度的影响[J]. 工业建筑, 2011, 41(S1): 739-742, 767. GAO Danying, WANG Qinxue, LI Xiangyu. Influence of age and size on compressive strength of fiber slag micro-powder concrete[J]. Industrial Construction, 2011, 41(S1): 739-742, 767. [2] 杨记芳. 矿渣粉对混凝土强度的影响[J]. 山西交通科技, 2012(2): 10-12+29. YANG Jifang. The influence of slag powder on concrete strength[J]. Shanxi Science & Technology of Communications, 2012(2): 10-12+29. [3] GEBREGZIABIHER B S, THOMAS R, PEETHAMPARAN S. Very early-age reaction kinetics and microstructural development in alkali-activated slag[J]. Cement and Concrete Composites, 2015, 55: 91-102. [4] RASHAD A M, ZEEDAN S R, HASSAN A A. Influence of the activator concentration of sodium silicate on the thermal properties of alkali-activated slag pastes[J]. Construction and Building Materials, 2016, 102: 811-820. [5] 何晶, 何建新. 利用碱激发矿渣粉制备的土体固化剂的力学性能研究[J]. 新疆农业大学学报, 2016, 39(5): 414-418. HE Jing, HE Jianxin. Study on the mechanical properties of solidified agent made from alkali activated slag powder[J]. Journal of Xinjiang Agricultural University, 2016, 39(5): 414-418. [6] 高会杰, 侯吉瑞, 岳湘安, 等. 氧化钙激活水淬高炉矿渣的实验研究[J]. 油田化学, 2005, 22(2): 111-114, 125. GAO Huijie, HOU Jirui, YUE Xiang’an, et al. An experimental study on activation of blast furnace slag by calcium oxide in oilwell cement/slag slurries[J]. Oilfield Chemistry, 2005, 22(2): 111-114, 125. [7] 韩静云, 宋旭艳, 郜志海. 锰渣-Ca(OH)2-H2O体系火山灰反应程度研究[J]. 混凝土, 2010(7): 34-36. HAN Jingyun, SONG Xuyan, GAO Zhihai. Study on pozzolanic reaction degree in manganese slag-Ca(OH)2-H2O system[J]. Concrete, 2010(7): 34-36. [8] 李浩, 邢军, 赵英良, 等. 高炉矿渣制备新型胶凝材料的试验研究[J]. 有色金属(矿山部分), 2016, 68(6): 52-54, 61. LI Hao, XING Jun, ZHAO Yingliang, et al. Experiment of new cementing material based on blast furnace slag[J]. Nonferrous Metals (Mining Section), 2016, 68(6): 52-54, 61. [9] 孔祥文, 王丹, 隋智通. 矿渣胶凝材料的活化机理及高效激发剂[J]. 中国资源综合利用, 2004, 22(6): 22-26. KONG Xiangwen, WANG Dan, SUI Zhitong. The activated mechanism and the best activator of slag activated cement[J]. China Resources Comprehensive Utilization, 2004, 22(6): 22-26. [10] 刘仁越, 王珊, 张同生, 等. 消石灰、无水石膏与石灰石粉对矿渣水泥性能的影响[J]. 水泥, 2009(8): 4-6. LIU Renyue, WANG Shan, ZHANG Tongsheng, et al. Effect of hydrated lime, anhydrite and limestone powder on performance of slag cement[J]. Cement, 2009(8): 4-6. [11] 丁铸, 王淑平, 张鸣, 等. 硫酸盐对矿渣在硅酸盐水泥中水化活性的激发作用[J]. 中国科技信息, 2008(18): 69-71. DING Zhu, WANG Shuping, ZHANG Ming, et al. China Science and Technology Information, 2008(18): 69-71. [12] 王复生, 尹斫. 弱碱激发矿渣胶凝材料的研究[J]. 中国水泥, 2006(6): 49-51. WANG Fusheng, YIN Zhuo. Research on weak alkali activated slag cementitious material[J]. China Cement, 2006(6): 49-51. [13] 黎良元, 石宗利, 艾永平. 石膏-矿渣胶凝材料的碱性激发作用[J]. 硅酸盐学报, 2008, 36(3): 405-410. LI Liangyuan, SHI Zongli, AI Yongping. Alkaline activation of gypsum-granulated blast furnace slag cementing materials[J]. Journal of the Chinese Ceramic Society, 2008, 36(3): 405-410. [14] 郝伟. 钢渣-粉煤灰复合胶凝材料制备技术及其应用[D]. 青岛: 中国海洋大学, 2015. HAO Wei. Preparation technology and application of steel slag-fly ash composite cementitious material[D]. Qingdao: Ocean University of China, 2015. [15] 毛志刚, 蓝天助, 张红日, 等. 钢渣特性及在道路工程中的应用研究[J]. 中外公路, 2019, 39(5): 233-236. MAO Zhigang, LAN Tianzhu, ZHANG Hongri, et al. Characteristics of steel slag and its application in road engineering[J]. Journal of China & Foreign Highway, 2019, 39(5): 233-236. [16] 徐晓云. 钢渣稳定土的干缩性能研究[J]. 中外公路, 2018, 38(4): 319-322. XU Xiaoyun. Research on dry shrinkage property of steel slag stabilized soil[J]. Journal of China & Foreign Highway, 2018, 38(4): 319-322. [17] 吴蓬, 吕宪俊, 胡术刚, 等. 粒化高炉矿渣胶凝性能活化研究进展[J]. 金属矿山, 2012(10): 157-161. WU Peng, LYU Xianjun, HU Shugang, et al. Study progress of the activation of granulated blast furnace slag cementitious material[J]. Metal Mine, 2012(10): 157-161.

This document is currently not available here.

Share

COinS