Abstract
To investigate the mechanical response of rubber powder modified asphalt pavement under dynamic loads, this paper, based on the “Full-Scale Accelerated Pavement Loading Testing” project, designed experimental schemes for asphalt mixtures with varying rubber powder contents. The paper employed accelerated loading test equipment to evaluate the stress and deformation of pavement structures, obtaining dynamic strain response data to analyze the strain response patterns of various structural layers. Combining finite element numerical simulations and a custom loading program, the paper examined the dynamic responses of rubber powder modified asphalt pavements under variable temperature conditions. The results show that through microscopic testing, Marshall tests, and SHRP tests, the optimal rubber powder content for 70# asphalt modification was determined. Performance technical parameters of rubber powder modified asphalt mixtures were obtained through experimental analysis. Using accelerated loading tests and finite element modeling, the paper compared the rutting deformation patterns of different pavement structures under varying axle load cycles.
Publication Date
5-11-2023
DOI
10.14048/j.issn.1671-2579.2023.02.039
First Page
227
Last Page
233
Submission Date
March 2025
Recommended Citation
Sanqiang, YANG; Shuang, SUN; Qian, LI; Xinlei, LIU; and Lusheng, QIN
(2023)
"Dynamic load response analysis of rubber powder modified asphalt mixture,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
2, Article 39.
DOI: 10.14048/j.issn.1671-2579.2023.02.039
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss2/39
Reference
[1] 陈亮, 鲁泽康, 李巧茹. 高速公路养护需求分析方法研究[J]. 中外公路, 2018, 38(6): 331-337. CHEN Liang, LU Zekang, LI Qiaoru. Research on analysis method of expressway maintenance demand[J]. Journal of China & Foreign Highway, 2018, 38(6): 331-337. [2] 周丹, 马泽欣, 刘黎萍, 等. 基于足尺加速加载试验的现役沥青路面疲劳特性研究[J]. 公路交通科技, 2020, 37(1):17-24. ZHOU Dan, MA Zexin, LIU Liping, et al. Study on fatigue performance of in-service asphalt pavement based on full-scale accelerated loading test[J]. Journal of Highway and Transportation Research and Development, 2020, 37(1):17-24. [3] 敬超, 张金喜. 沥青路面性能预测研究综述[J]. 中外公路, 2017, 37(5): 31-35. JING Chao, ZHANG Jinxi. Summary of asphalt pavement performance prediction research[J]. Journal of China & Foreign Highway, 2017, 37(5): 31-35. [4] SHU X, HUANG B S. Recycling of waste tire rubber in asphalt and Portland cement concrete: an overview[J]. Construction and Building Materials, 2014, 67: 217-224. [5] 王歌. 基于活化技术的高掺量橡胶沥青性能[D]. 重庆: 重庆大学, 2013. WANG Ge. Properties of high content rubber asphalt based on activation technology[D]. Chongqing: Chongqing University, 2013. [6] 杨三强, 周晓雨, 闰明涛, 等. 废旧胶粉掺量对改性沥青溶胀机理的影响[J]. 长沙理工大学学报(自然科学版), 2018, 15(4): 17-22. YANG Sanqiang, ZHOU Xiaoyu, RUN Mingtao, et al. Microscopic characteristics of rubber modified asphalt in different rubber powder content[J]. Journal of Changsha University of Science & Technology (Natural Science), 2018, 15(4): 17-22. [7] YAO H R, ZHOU S, WANG S F. Structural evolution of recycled tire rubber in asphalt[J]. Journal of Applied Polymer Science, 2016, 133(6): app.42954. [8] ASARO L, GRATTON M, SEGHAR S, et al. Recycling of rubber wastes by devulcanization[J]. Resources, Conservation and Recycling, 2018, 133: 250-262. [9] 马庆伟, 郭忠印, 李文博, 等. 不同因素对橡胶复合改性沥青高温性能影响分析[J]. 中外公路, 2022, 42(3): 225-230. MA Qingwei, GUO Zhongyin, LI Wenbo, et al. Analysis of influence of different factors on high temperature performance of rubber composite modified asphalt[J]. Journal of China & Foreign Highway, 2022, 42(3): 225-230. [10] 周超. 橡胶粉改性生物沥青的老化特性研究[J]. 中外公路, 2022, 42(4): 237-243. ZHOU Chao. Study on aging characteristics of bio-asphalt modified by rubber powder[J]. Journal of China & Foreign Highway, 2022, 42(4): 237-243. [11] 王国清, 曹东伟, 王志斌, 等. 大掺量胶粉改性沥青胶结料流变性能对比研究[J]. 公路交通科技, 2022, 39(7): 7-14, 22. DOI: 10.3969/j.issn.1002-0268.2022.07.002. WANG Guoqing, CAO Dongwei, WANG Zhibin, et al. Comparative study on rheological properties of asphalt binder modified with high content crumb rubber[J]. Journal of Highway and Transportation Research and Development, 2022, 39(7): 7-14, 22. [12] 张飞, 王岚, 邢永明. 温拌胶粉改性沥青混合料的低温性能[J]. 中外公路, 2022, 42(3): 174-179. ZHANG Fei, WANG Lan, XING Yongming. Low temperature performance of modified asphalt mixtures with warm mix rubber powder[J]. Journal of China & Foreign Highway, 2022, 42(3): 174-179. [13] 冯新军, 戴子建. 胶粉表面功能化减少胶粉改性沥青离析的研究[J]. 中外公路, 2021, 41(6): 221-226. FENG Xinjun, DAI Zijian. Surface functionalization of rubber particles to reduce phase separation in rubberized asphalt for sustainable construction[J]. Journal of China & Foreign Highway, 2021, 41(6): 221-226. [14] 蔡斌, 王佳, 相宏伟, 等. 超高掺量胶粉改性沥青性能评价及机理研究[J]. 公路交通科技, 2022, 39(9):16-22. CAI Bin, WANG Jia, XIANG Hongwei, et al. Evaluation on performance and analysis on mechanism of ultra-high content crumb rubber modified asphalt[J]. Journal of Highway and Transportation Research and Development, 2022, 39(9):16-22. [15] 叶长建, 陆少毅, 黄秋山, 等. 废胶粉/天然沥青复合改性沥青流变性能与改性机理研究[J]. 中外公路, 2022, 42(3): 219-224. YE Changjian, LU Shaoyi, HUANG Qiushan, et al. Study on rheological properties and modification mechanism of crumb rubber/natural asphalt composite modified asphalt[J]. Journal of China & Foreign Highway, 2022, 42(3): 219-224. [16] 李波, 李鹏, 张新雨, 等. 废旧胶粉的反应与交联作用对橡胶沥青黏度的影响[J]. 长安大学学报(自然科学版), 2017, 37(2): 26-34. LI Bo, LI Peng, ZHANG Xinyu, et al. Interaction and particle effect of crumb rubber characteristics on Brookfield viscosity of rubber asphalt binder[J]. Journal of Chang’an University (Natural Science Edition), 2017, 37(2): 26-34. [17]交通运输部公路科学研究院 .公路工程沥青及沥青混合料试验规程 :JTGE20—2011[S].北京:人民交通出版社 ,2011. Research Institute of Highway Ministry of Transport.Standard Test Methods of Bitumen and Bituminous Mixtures for Highway Engineering: JTG E20—2011[S]. Beijing: China Communications Press, 2011. [18] 杨三强, 刘娜, 黄勇. 寒冷地区橡胶改性沥青及沥青混合料设计与施工技术[M]. 北京: 人民交通出版社, 2017. YANG Sanqiang, LIU Na, HUANG Yong. Design and construction technology of asphalt rubber and asphalt mixture in cold area [M]. Beijing: China Communications Press, 2017. [19] HAN D, ZHU G D, HU H M, et al. Dynamic simulation analysis of the tire-pavement system considering temperature fields[J]. Construction and Building Materials, 2018, 171: 261-272. [20] 石立万, 王端宜, 吴瑞麟. 温度荷载联合作用下沥青路面全厚度车辙研究[J]. 华中科技大学学报(自然科学版), 2013, 41(11): 37-40. SHI Liwan, WANG Duanyi, WU Ruilin. Common effects of temperature and load on total thickness rutting of asphalt pavement[J]. Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41(11): 37-40. [21] BEHNKE R, WOLLNY I, HARTUNG F, et al. Thermo-mechanical finite element prediction of the structural long-term response of asphalt pavements subjected to periodic traffic load: Tire-pavement interaction and rutting[J]. Computers & Structures, 2019, 218: 9-31. [22] 胡贵华, 李彦伟, 张倩, 等. 考虑温度梯度和动态模量的全厚式车辙深度预估[J]. 长安大学学报(自然科学版), 2015, 35(3): 8-12, 20. HU Guihua, LI Yanwei, ZHANG Qian, et al. Depth prediction of total thickness rutting considering temperature gradient and dynamic modulus[J]. Journal of Chang’an University (Natural Science Edition), 2015, 35(3): 8-12, 20. [23] 李倩. 车辆-沥青路面结构系统相互作用动力分析及路面损伤机制研究[D]. 西安: 西安建筑科技大学, 2018. LI Qian. Dynamic analysis of vehicle-asphalt pavement structure system interaction and research on pavement damage mechanism[D]. Xi’an: Xi’an University of Architecture and Technology, 2018. [24] 杨毅, 刘忠, 辛亚兵, 等. 动载作用下半刚性基层沥青路面应变响应的演化规律[J]. 中外公路, 2017, 37(2): 51-55. YANG Yi, LIU Zhong, XIN Yabing, et al. Evolution law of strain response of semi-rigid base asphalt pavement under dynamic load[J]. Journal of China & Foreign Highway, 2017, 37(2): 51-55.
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons