•  
  •  
 

Abstract

To investigate the microstructure and modification mechanism of asphalt modified with oil-coal blend, SK-90# asphalt was mixed with 5%, 10%, 15%, 20%, and 25% (external blending method) oil-coal blend to produce modified asphalt. The performance and microstructural changes of the modified asphalt were analyzed using contact angle testing, infrared spectroscopy, cross-sectional SEM, and X-ray photoelectron spectroscopy. The results show that the oil-coal blend exhibits good compatibility with asphalt. During the modification process, esterification reactions occurred, resulting in a decrease in hydroxyl-containing aromatic compounds and an increase in carbonyl-containing aromatic compounds. Macroscopically, the oil-coal blend-modified asphalt demonstrated excellent high-temperature performance.

Publication Date

5-11-2023

DOI

10.14048/j.issn.1671-2579.2023.02.040

First Page

234

Last Page

238

Submission Date

March 2025

Reference

[1] 吴春来. 煤炭直接液化[M]. 北京: 化学工业出版社, 2010. WU Chunlai. Direct coal liquefaction[M]. Beijing: Chemical Industry Press, 2010. [2] 罗万江, 兰新哲, 宋永辉, 等. 煤直接液化残渣的利用研究进展[J]. 材料导报, 2013, 27(11): 153-157. LUO Wanjiang, LAN Xinzhe, SONG Yonghui, et al. Research progress on utilization of coal liquefaction residue[J]. Materials Reports, 2013, 27(11): 153-157. [3] 顾绍兴, 马骏, 安会勇. 沥青改性剂发展综述[J]. 当代化工, 2015, 44(6): 1344-1347. GU Shaoxing, MA Jun, AN Huiyong. Development of the asphalt modifier[J]. Contemporary Chemical Industry, 2015, 44(6): 1344-1347. [4] 陈茂山, 要辉, 王洪学, 等. 煤直接液化残渣制备高附加值产品的探索研究[J]. 中国煤炭, 2020, 46(5): 74-80. CHEN Maoshan, YAO Hui, WANG Hongxue, et al. Exploratory research on preparation of high value-added products\r from direct coal liquefaction residue[J]. China Coal, 2020, 46(5): 74-80. [5] 齐振东. 煤液化沥青理化特性及应用研究进展[J]. 能源科技, 2021(5): 71-75. QI Zhendong. Research progress on physicochemical properties and application of coal liquefied pitch[J]. Energy Science and Technology, 2021(5): 71-75. [6] 冯雷, 赵鹏, 秦杨晓. 煤液化残渣与胶粉复合改性沥青的制备与性能研究[J]. 筑路机械与施工机械化, 2017, 34(9): 46-50. FENG Lei, ZHAO Peng, QIN Yangxiao. Preparation and performance study of compound modified asphalt with coal liquefaction residue and crumb rubber[J]. Road Machinery & Construction Mechanization, 2017, 34(9): 46-50. [7] 季节, 徐新强, 许鹰, 等. 煤直接液化残渣改性沥青胶浆性能研究[J]. 燃料化学学报, 2021, 49(8): 1095-1101. JI Jie, XU Xinqiang, XU Ying, et al. Research on performance of direct coal liquefaction residue modified asphalt mortar[J]. Journal of Fuel Chemistry and Technology, 2021, 49(8): 1095-1101. [8] 季节, 苑志凯, 魏建明, 等. 煤直接液化残渣改性沥青低温性能的改进[J]. 中国石油大学学报(自然科学版), 2019, 43(4): 166-173. JI Jie, YUAN Zhikai, WEI Jianming, et al. Improvements of low-temperature properties of direct coal liquefaction residue modified asphalt[J]. Journal of China University of Petroleum (Edition of Natural Science), 2019, 43(4): 166-173. [9] 郭诗惠, 刘炳. 纳米材料复配对SBS改性沥青流变及抗老化性能的影响[J]. 中外公路, 2019, 39(3): 241-246. GUO Shihui, LIU Bing. Effect of nanomaterial combinations on rheological and anti-aging performance of SBS modified asphalt[J]. Journal of China & Foreign Highway, 2019, 39(3): 241-246. [10] 武昊. 煤直接液化残渣与石油沥青相容性研究[D]. 北京: 北京建筑大学, 2019. WU Hao. Study on compatibility of coal direct liquefaction residue with petroleum asphalt[D]. Beijing: Beijing University of Civil Engineering and Architecture, 2019. [11] 罗蓉, 许苑, 刘涵奇, 等. DCLR改性沥青的流变力学性质[J]. 中国公路学报, 2018, 31(6): 165-171. LUO Rong, XU Yuan, LIU Hanqi, et al. Rheological mechanical properties of DCLR-modified asphalt binders[J]. China Journal of Highway and Transport, 2018, 31(6): 165-171. [12] 谷小会. 煤直接液化残渣的性质及利用现状[J]. 洁净煤技术, 2012, 18(3): 63-66. GU Xiaohui. Properties and utilization of coal direct liquefaction residue[J]. Clean Coal Technology, 2012, 18(3): 63-66. [13] 张德润, 罗蓉, 陈彧, 等. 基于表面自由能的煤直接液化残渣改性沥青性能分析[J]. 中国公路学报, 2016, 29(1): 22-28. ZHANG Derun, LUO Rong, CHEN Yu, et al. Performance analysis of DCLR-modified asphalt based on surface free energy[J]. China Journal of Highway and Transport, 2016, 29(1): 22-28. [14] 王永清, 周新锋. 油煤共炼物改性沥青性能及应用[J]. 炼油技术与工程, 2019, 49(12): 23-28. WANG Yongqing, ZHOU Xinfeng. Performance and application of asphalt modified by oil-coal blends[J]. Petroleum Refinery Engineering, 2019, 49(12): 23-28. [15] 陈建友. 煤直接液化残渣和废食用油复合改性沥青及混合料性能研究[J]. 公路交通科技, 2022, 39(11):16-25. CHEN Jianyou. Study on performance of direct coal liquefaction residue and waste cooking oil composite modified asphalt and mixture[J]. Journal of Highway and Transportation Research and Development, 2022, 39(11):16-25. [16] 武昊.煤直接液化残渣与石油沥青相容性研究 [D].北京:北京建筑大学 ,2019. [17] 许鹰, 季节, 赵永尚, 等. 煤直接液化残渣改性沥青胶浆高温性能研究[J]. 中外公路, 2015, 35(5): 235-239. XU Ying, JI Jie, ZHAO Yongshang, et al.Study on the high temperature performance of coal direct liquefaction residue modified asphalt slurry [J]. Journal of China & Foreign Highway, 2015, 35(5): 235-239. [18] 高齐. 煤直接液化残渣复合改性沥青性能研究[D]. 呼和浩特: 内蒙古农业大学, 2022. GAO Qi. Study on properties of composite modified asphalt with coal liquefaction residue[D]. Hohhot: Inner Mongolia Agricultural University, 2022. [19] 季节, 马榕达, 郑文华, 等. 煤直接液化残渣对沥青-集料黏附性的影响[J]. 中国公路学报, 2018, 31(9): 27-33. JI Jie, MA Rongda, ZHENG Wenhua, et al. Effect of direct coal liquefaction residue on adhesion characteristic between asphalt and aggregate[J]. China Journal of Highway and Transport, 2018, 31(9): 27-33. [20] 季节, 李辉, 王佳妮, 等. 增容剂对煤直接液化残渣改性沥青低温性能的影响[J]. 燃料化学学报, 2019, 47(8): 925-933. JI Jie, LI Hui, WANG Jiani, et al. Effect of compatibilizer on low-temperature performances of modified asphalts from direct coal liquefaction residue[J]. Journal of Fuel Chemistry and Technology, 2019, 47(8): 925-933. [21] 李亚非, 闫瑾, 陈景. 活化“湿法”加工布敦岩沥青及沥青混合料路用性能研究[J]. 中外公路, 2020, 40(3): 308-311. LI Yafei, YAN Jin, CHEN Jing. Study on road performance of activated “wet method” processing Butunyan asphalt and asphalt mixture[J]. Journal of China & Foreign Highway, 2020, 40(3): 308-311.

Share

COinS