Abstract
To study and verify the compaction control method for high liquid limit clay subgrade in the humid and rainy regions of Guizhou Province, a series of experiments were conducted on high water content and high liquid limit clay from the Kaiyang Expressway (Kaili to Yangjia) in Guizhou. The experiments included wet heavy compaction tests, CBR strength tests, basic physical property tests, consolidation tests, thermogravimetric analysis, and trial road tests to analyze the performance of high liquid limit clay in road applications. The results show that for high liquid limit clay, increasing compaction energy does not always improve performance, as excessive energy reduces CBR strength. The compression coefficient of the soil increases with water content but remains within standard limits even at high water content. During compaction, the dry density reaches a peak value beyond which further rolling reduces efficiency. By considering adsorbed water as part of the solid phase, a compaction control standard for the high liquid limit clay of the Kaiyang Expressway was calculated, which aligns with the actual standard used in construction, validating its practicality and rationality.
Publication Date
5-11-2023
DOI
10.14048/j.issn.1671-2579.2023.02.006
First Page
31
Last Page
35
Submission Date
March 2025
Recommended Citation
Shuliang, XU
(2023)
"Research on compaction control method of high water content and high liquid limit clay in Guizhou Province,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
2, Article 6.
DOI: 10.14048/j.issn.1671-2579.2023.02.006
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss2/6
Reference
[1] 戴范, 刘枫, 黄希望, 等. 一级公路高液限土水泥改良试验研究[J]. 中外公路, 2020, 40(1): 240-242. DAI Fan, LIU Feng, HUANG Xiwang, et al. Experimental study on cement improvement of high liquid limit soil of first class highway[J]. Journal of China & Foreign Highway, 2020, 40(1): 240-242. [2] 曾胜. 高液限土室内改良试验研究[J]. 中外公路, 2007, 27(3): 208-210. ZENG Sheng. Experimental study on indoor improvement of high liquid limit soil[J]. Journal of China & Foreign Highway, 2007, 27(3): 208-210. [3] 吴立坚, 钟发林, 吴昌兴, 等. 高液限土路基填筑技术研究[J]. 中国公路学报, 2003, 16(1): 32-35, 39. WU Lijian, ZHONG Falin, WU Changxing, et al. Study of subgrade construction from high liquid limit soil[J]. China Journal of Highway and Transport, 2003, 16(1): 32-35, 39. [4] 杨世基. 粘性土路基的压实和稳定性[J]. 中国公路学报, 1989, 2(3): 1-10. YANG Shiji. Compaction and stability of cohesive soil subagrade[J]. China Journal of Highway and Transport, 1989, 2(3): 1-10. [5] 中交第二公路勘察设计研究院有限公司 .公路路基设计规范:JTGD30—2015[S].北京:人民交通出版社股份有限公司,2015. CCCC Second Highway Consultants Co., Ltd..Specifications for design of highway subgrades: JTG D30—2015[S]. Beijing: China Communications Press, 2015. [6] 贵州交通运输标准化技术委员会 .贵州省红粘土和高液限土路基设计与施工技术规范 :DB52/T1041—2015[S].贵阳:贵州省质量技术监督局 ,2015. Road Transport.Technical specification for design and construction of red clay and high liquid limit soil subgrade in Guizhou Province: DB52/T 1041—2015[S]. Guiyang:Administration for Market Regulation of Guizhou Province, 2015. [7]福建省高速公路建设总指挥部 ,交通运输部公路科学研究所,福建三明泉三高速公路有限公司 ,等.福建省高液限土路基设计与施工技术规范 :DB35/T1640—2017[S].福州:福建省质量技术监督局 ,2017. Technical specification for design and construction of high liquid limit soil subgrade in Fujian Province: DB35/T 1640—2017[S]. Guiyang:Administration for Market Regulation of Guizhou Province,2017. [8] 谈云志, 孔令伟, 郭爱国, 等. 红黏土路基填筑压实度控制指标探讨[J]. 岩土力学, 2010, 31(3): 851-855. TAN Yunzhi, KONG Lingwei, GUO Aiguo, et al. Discussion on the compaction degree index of subgrade filled with laterite[J]. Rock and Soil Mechanics, 2010, 31(3): 851-855. [9] 程涛, 洪宝宁, 程江涛. 降低压实度标准的高液限土填筑方案[J]. 水利水电科技进展, 2014, 34(4): 70-74. CHENG Tao, HONG Baoning, CHENG Jiangtao. Filling scheme of high liquid limit soil by reducing standard of compaction degree[J]. Advances in Science and Technology of Water Resources, 2014, 34(4): 70-74. [10] 张锐, 肖宇鹏, 刘闯, 等. 考虑吸附结合水影响的高液限土路基压实度控制标准[J]. 中国公路学报, 2020, 33(1): 32-40, 50. ZHANG Rui, XIAO Yupeng, LIU Chuang, et al. Control standards for degree of compaction of high liquid limit soil subgrade considering effects of adsorbed bound water[J]. China Journal of Highway and Transport, 2020, 33(1): 32-40, 50. [11] 张锐, 肖宇鹏, 刘闯. 海南高液限土结合水试验研究[J]. 长沙理工大学学报(自然科学版), 2019, 16(1): 10-16. ZHANG Rui, XIAO Yupeng, LIU Chuang. Experimental study on high liquid limited soil bound water in Hainan[J]. Journal of Changsha University of Science & Technology (Natural Science), 2019, 16(1): 10-16. [12] А.И.库里契茨基,著.土中结合水译文集 [M].李生林,薄遵照,秦素娟,等,译.北京:地质出版社 ,1982. KULICHTSKY A H, author. A collection of translations of water binding in soil [M]. LI Shenglin, BO Zunzhao, QIN Sujuan, et al. Translation. Beijing: Geological Press, 1982. [13] MIN F F, PENG C L, SONG S X. Hydration layers on clay mineral surfaces in aqueous solutions: A review/warstwy uwodnione Na powierzchni minerałów ilastych W roztworach wodnych: Przegląd[J]. Archives of Mining Sciences, 59(2): 489-500. [14] 张玉, 陈铁林, 王志芬, 等. 微观结合水“固化” 黏性土渗流系数等效计算方法研究[J]. 岩石力学与工程学报, 2018, 37(4): 1004-1010. ZHANG Yu, CHEN Tielin, WANG Zhifen, et al. An equivalent method for calculating the seepage coefficient of clay based on solidified micro-bound water[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(4): 1004-1010. [15] 张锐, 申姁宁, 杨相展, 等. 黏土结合水分类及测试方法研究综述[J]. 中外公路, 2022, 42(3): 1-10. ZHANG Rui, SHEN Xuning, YANG Xiangzhan, et al. Review on classification and testing methods of clay-bound water[J]. Journal of China & Foreign Highway, 2022, 42(3): 1-10. [16] 郑健龙, 缪伟. 膨胀土路基温度现场观测分析与研究[J]. 长沙理工大学学报(自然科学版), 2007, 4(4): 12-15. ZHENG Jianlong, MIAO Wei. Analysis and study on temperature field observing in the expansive soil subgrade[J]. Journal of Changsha University of Science & Technology (Natural Science), 2007, 4(4): 12-15. [17] 邵玉娴, 施斌, 刘春, 等. 黏性土水理性质温度效应研究[J]. 岩土工程学报, 2011, 33(10): 1576-1582. SHAO Yuxian, SHI Bin, LIU Chun, et al. Temperature effect on hydro-physical properties of clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1576-1582. [18] 郑健龙, 张锐. 公路膨胀土路基变形预测与控制方法[J]. 中国公路学报, 2015, 28(3): 1-10. ZHENG Jianlong, ZHANG Rui. Prediction and control method for deformation of highway expansive soil subgrade[J]. China Journal of Highway and Transport, 2015, 28(3): 1-10. [19] 李邦武, 任天锃, 张锐. 高液限土路基顶面回弹弯沉控制方法研究[J]. 中外公路, 2021, 41(5): 17-21. LI Bangwu, REN Tianzeng, ZHANG Rui. Research on control method of rebound deflection on top of high liquid limit soil roadbed[J]. Journal of China & Foreign Highway, 2021, 41(5): 17-21. [20] 张锐, 龙明旭, 刘昭京, 等. 膨胀土的二维膨胀各向异性试验研究[J]. 中国公路学报, 2022, 35(10): 65-74. ZHANG Rui, LONG Mingxu, LIU Zhaojing, et al. Experimental study on two-dimensional swelling anisotropy of expansive soils[J]. China Journal of Highway and Transport, 2022, 35(10): 65-74. [21] 袁胜洋, 刘先峰, 潘高峰, 等. 压实膨胀土压实特性试验研究[J]. 岩石力学与工程学报, 2021, 40(S1): 2913-2922. DOI: 10.13722/j.cnki.jrme.2020.0905. YUAN Shengyang, LIU Xianfeng, PAN Gaofeng, et al. Experimental study on compaction characteristics of compacted expansive soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S1): 2913-2922.
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons