Abstract
This paper investigates representative fine-grained subgrade soils from a highway project. Samples with varying water content and compaction degrees were prepared, and the effects of water content, compaction degree, plasticity index, dynamic deviator stress, and confining pressure on the dynamic resilience modulus (Mr) were analyzed using dynamic triaxial tests. Matlab’s global optimization toolbox was employed to identify the relationships between model parameters ki and physical property indices, thus constructing a prediction model for the dynamic resilience modulus based on physical properties. The predictive performance of this model was compared with conventional models outlined in existing standards. The results show that Mr decreases nonlinearly with increasing dynamic deviator stress and water content, while it increases with rising confining pressure and compaction degree. Mr is inversely proportional to the plasticity index (Ip). Using Matlab’s built-in artificial neural network (ANN) and genetic algorithm (GA) toolkits, a relationship was established between ki and water content (w), compaction degree (K), plasticity index (Ip), and fine particle content (P0.075). This relationship was used to construct a predictive model for the dynamic resilience modulus. Compared to conventional models in standards, the proposed model achieves an average prediction error of 5.03% and a maximum prediction error of less than 15%, demonstrating improved predictive accuracy. Therefore, conducting targeted dynamic resilience modulus tests to develop prediction models based on physical properties holds practical value for specific highway subgrade construction projects.
Publication Date
5-11-2023
DOI
10.14048/j.issn.1671-2579.2023.02.007
First Page
36
Last Page
42
Submission Date
March 2025
Recommended Citation
Wei, TAN
(2023)
"Study on dynamic resilience modulus prediction model of subgrade fine‐grained soil based on physical property parameters,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
2, Article 7.
DOI: 10.14048/j.issn.1671-2579.2023.02.007
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss2/7
Reference
[1] 徐艳玲, 唐伯明, 谢国栋, 等. 不同含水率下应力级位对粘性土动回弹模量的影响[J]. 中外公路, 2011, 31(6): 68-72. XU Yanling, TANG BaiMing, XIE Guodong, et al. The influence of stress level on dynamic resilient modulus of cohesive soil under different water content[J]. Journal of China & Foreign Highway, 2011, 31(6): 68-72. [2] 张宜洛, 李宁, 邓展伟, 等. 内蒙古地区典型路基土动态回弹模量研究[J]. 中外公路, 2022, 42(4): 13-20. ZHANG Yiluo, LI Ning, DENG Zhanwei, et al. Research on dynamic resilience modulus of typical subgrade soil in Inner Mongolia[J]. Journal of China & Foreign Highway, 2022, 42(4): 13-20. [3] 张军辉, 彭俊辉, 郑健龙. 路基土动态回弹模量预估进展与展望[J]. 中国公路学报, 2020, 33(1): 1-13. ZHANG Junhui, PENG Junhui, ZHENG Jianlong. Progress and prospect of the prediction model of the resilient modulus of subgrade soils[J]. China Journal of Highway and Transport, 2020, 33(1): 1-13. [4] 张锐, 滕煜晟, 刘闯. 路基回弹弯沉控制方法及试验验证[J]. 长沙理工大学学报(自然科学版), 2019, 16(2): 8-14. ZHANG Rui, TENG Yusheng, LIU Chuang. Control method and experimental verification of roadbed rebound deflection[J]. Journal of Changsha University of Science & Technology (Natural Science), 2019, 16(2): 8-14. [5] CHEN D H,ZAMAN M M,LAGURO J G.Resilient moduli of aggregate materials variability due to testing procedure and aggregate type[C]//Transportation Research Record.Compaction of Difficult Soils and Resilient Modulus Testing.Transportation Research Board,National Research Council,1994,1462:57‑64. [6] LI D Q, SELIG E T. Resilient modulus for fine-grained subgrade soils[J]. Journal of Geotechnical Engineering, 1994, 120(6): 939-957. [7] MAGNAN J P, NDIAYE M. Determination and assessment of deformation moduli of compacted lateritic gravels, using soaked CBR tests[J]. Transportation Geotechnics, 2015, 5: 50-58. [8] 肖军华. 提速列车荷载下粉土的力学响应与路基稳定性研究[D]. 北京: 北京交通大学, 2008. XIAO Junhua. Study on mechanical response and subgrade stability of silt under the load of speed-up train[D]. Beijing: Beijing Jiaotong University, 2008. [9] 凌建明, 苏华才, 谢华昌, 等. 路基土动态回弹模量的试验研究[J]. 地下空间与工程学报, 2010, 6(5): 919-925. LING Jianming, SU Huacai, XIE Huachang, et al. Laboratory research on dynamic resilient modulus of subgrade soil[J]. Chinese Journal of Underground Space and Engineering, 2010, 6(5): 919-925. [10] 朱俊高, 王元龙, 贾华, 等. 粗粒土回弹特性试验研究[J]. 岩土工程学报, 2011, 33(6): 950-954. ZHU Jungao, WANG Yuanlong, JIA Hua, et al. Experimental study on resilience behaviour of coarse grained soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 950-954. [11] 陈声凯, 凌建明, 罗志刚. 路基土回弹模量应力依赖性分析及预估模型[J]. 土木工程学报, 2007, 40(6): 95-99, 104. CHEN Shengkai, LING Jianming, LUO Zhigang. Stress-dependent characteristics and prediction model of the resilient modulus of subgrade soils[J]. China Civil Engineering Journal, 2007, 40(6): 95-99, 104. [12] 冉武平, 王金山, 艾贤臣, 等. 粗粒氯盐渍土动态回弹模量试验研究与理论模型[J]. 岩土工程学报, 2021, 43(9): 1746-1754. RAN Wuping, WANG Jinshan, AI Xianchen, et al. Laboratory tests and theoretical model for dynamic resilient modulus of coarse-grained chlorine saline soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(9): 1746-1754. [13] 杨树荣, 拱祥生, 黄伟庆, 等. 非饱和粘性路基土回弹模量之研究[J]. 岩土工程学报, 2006, 28(2): 225-229. YANG Shurong, GONG Xiangsheng, HUANG Weiqing, et al. Resilient modulus of unsaturated cohesive subgrade soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 225-229. [14] 刘小平. 非饱和土路基水作用机理及其迁移特性研究[D]. 长沙: 湖南大学, 2008. LIU Xiaoping. Study on water action mechanism and migration characteristics of unsaturated soil subgrade[D]. Changsha: Hunan University, 2008. [15] 朱金鹏, 王志强, 林超. 山西省路基动静态回弹模量相关关系研究[J]. 中外公路, 2016, 36(2): 29-33. ZHU Jinpeng, WANG Zhiqiang, LIN Chao. Study on correlation between dynamic and static resilience modulus of subgrade in Shanxi Province[J]. Journal of China & Foreign Highway, 2016, 36(2): 29-33. DOI: 10.14048/j.issn.1671-2579.2016.02.007. [16] 中交第二公路勘察设计研究院有限公司 .公路路基设计规范:JTGD30—2015[S].北京:人民交通出版社股份有限公司,2015. CCCC Second Highway Consultants Co., Ltd..Specifications for design of highway subgrades: JTG D30—2015[S]. Beijing: China Communications Press, 2015. [17] 交通运输部公路科学研究院.公路土工试验规程:JTG 3430 —2020 [S].北京:人民交通出版社股份有限公司,2020. Test Methods of Soils for Highway Engineering.Test methods of soils for highway engineering::JTG 3430 —2020 [S].Beijing:China Communications Press Co.,Ltd.,2020.
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons