•  
  •  
 

Abstract

As a kind of asphalt mixture additive and stabilizer, fiber can effectively improve the performance index of asphalt pavement and extend the service life of asphalt pavement. Based on the analysis of relevant literature in China and abroad, this paper summarized the action mechanism of fiber modified asphalt and asphalt mixture, the effect of fiber content on properties, and the characteristics of different types of fiber modified asphalt. Fiber can effectively improve the high temperature property, low temperature property, and fatigue property of asphalt mixture, especially the resistance to low temperature and fatigue cracking of asphalt mixture. The modification effect of fiber can be improved by choosing the appropriate fiber length and content and the surface structure of the modified fiber. Fiber composite modified asphalt can improve the performance of single modified asphalt and further enhance the comprehensive performance of asphalt mixture. Fiber modified asphalt mixture can comprehensively improve the overall performance of asphalt pavement and provide technical support for durable and long-life pavement. Finally, the influence of the fiber reinforcement mechanism on the properties of the asphalt mixture was analyzed, and future research direction was given.

Publication Date

7-14-2023

DOI

10.14048/j.issn.1671-2579.2023.03.001

First Page

1

Last Page

16

Submission Date

March 2025

Reference

[1] 王朝辉, 舒诚, 韩冰, 等. 高模量沥青混凝土研究进展[J]. 长安大学学报(自然科学版), 2020, 40(1): 1-15. WANG Chaohui, SHU Cheng, HAN Bing, et al. Research progress of high modulus asphalt concrete[J]. Journal of Chang’an University (Natural Science Edition), 2020, 40(1): 1-15. [2] 吴金荣, 孙娣, 张经双, 等. 氯盐对纤维沥青混凝土马歇尔试验影响[J]. 科学技术与工程, 2016, 16(34): 261-263+275. WU Jinrong, SUN Di, ZHANG Jingshuang, et al. Influence of chlorine salt on Marshall test of fiber reinforced asphalt concrete[J]. Science Technology and Engineering, 2016, 16(34): 261-263+275. [3] WANG Z G, DAI Q L, PORTER D, et al. Investigation of microwave healing performance of electrically conductive carbon fiber modified asphalt mixture beams[J]. Construction and Building Materials, 2016, 126: 1012-1019. [4] WANG H P, YANG J, LIAO H, et al. Electrical and mechanical properties of asphalt concrete containing conductive fibers and fillers[J]. Construction and Building Materials, 2016, 122: 184-190. [5] LIU Q T, SCHLANGEN E, VAN DE VEN M, et al. Evaluation of the induction healing effect of porous asphalt concrete through four point bending fatigue test[J]. Construction and Building Materials, 2012, 29: 403-409 [6] 倪良松, 陈华鑫, 胡长顺, 等. 纤维沥青混合料增强作用机理分析[J]. 合肥工业大学学报(自然科学版), 2003, 26(5): 1033-1037. NI Liangsong, CHEN Huaxin, HU Changshun, et al. Discussion on the reinforcement mechanism of fiber-reinforced asphalt mixture[J]. Journal of Hefei University of Technology (Natural Science), 2003, 26(5): 1033-1037. [7] 封基良. 纤维沥青混合料增强机理及其性能研究[D]. 南京: 东南大学, 2006. FENG Jiliang. Study on reinforcement mechanism and performance of fiber asphalt mixture[D]. Nanjing: Southeast University, 2006. [8] 荀家正, 封基良. 纤维增强沥青混合料低温性能及增强机理试验[J]. 筑路机械与施工机械化, 2016, 33(7): 45-49. XUN Jiazheng, FENG Jiliang. Experimental study on low temperature properties and enhancement mechanism of fiber reinforced asphalt mixture[J]. Road Machinery & Construction Mechanization, 2016, 33(7): 45-49. [9] 朱洪洲, 谭祺琦, 杨孝思, 等. 纤维改性沥青混合料性能的研究现状与展望[J]. 科学技术与工程, 2022, 22(7): 2573-2584. ZHU Hongzhou, TAN Qiqi, YANG Xiaosi, et al. Research status and prospect of fiber modified asphalt mixture performance[J]. Science Technology and Engineering, 2022, 22(7): 2573-2584. [10] 凡涛涛. CSW-聚酯纤维复合改性沥青及沥青混合料性能研究[D]. 西安: 长安大学, 2020. FAN Taotao. Study on properties of CSW- polyester fiber composite modified asphalt and asphalt mixture[D]. Xi’an: Changan University, 2020. [11] 张攀. 纤维在沥青混合料中的加筋效果评价研究[D]. 西安: 长安大学, 2014. ZHANG Pan. Study on reinforcement effect evaluation of fiber in asphalt mixture[D]. Xi’an: Chang’an University, 2014. [12] KIM Y R, LITTLE D N. Linear viscoelastic analysis of asphalt mastics[J]. Journal of Materials in Civil Engineering, 2004, 16(2): 122-132. [13] SOBHAN K, KRIZEK R J. Fatigue behavior of fiber-reinforced recycled aggregate base course[J]. Journal of Materials in Civil Engineering, 1999, 11(2): 124-130. [14] CELAURO C, PRATICÒ F G. Asphalt mixtures modified with basalt fibres for surface courses[J]. Construction and Building Materials, 2018, 170: 245-253. [15] HAO L C, YU W D. Evaluation of thermal protective performance of basalt fiber nonwoven fabrics[J]. Journal of Thermal Analysis and Calorimetry, 2010, 100(2): 551-555. [16] XIANG Y, XIE Y J, LONG G C. Effect of basalt fiber surface silane coupling agent coating on fiber-reinforced asphalt: from macro-mechanical performance to micro-interfacial mechanism[J]. Construction and Building Materials, 2018, 179: 107-116. [17] 程永春, 毕海鹏, 马桂荣, 等. 纳米TiO2/CaCO3-玄武岩纤维复合改性沥青的路用性能[J]. 吉林大学学报(工学版), 2018, 48(2): 460-465. CHENG Yongchun, BI Haipeng, MA Guirong, et al. Pavement performance of nano materials-basalt fiber compound modified asphalt binder[J]. Journal of Jilin University (Engineering and Technology Edition), 2018, 48(2): 460-465. [18] 周嘉博. 基于玻璃纤维及微米级颗粒填料的环氧沥青混凝土增强试验研究[D]. 广州: 华南理工大学, 2019. ZHOU Jiabo. Experimental study on reinforcement of epoxy asphalt concrete based on glass fiber and micron-sized particle filler[D]. Guangzhou: South China University of Technology, 2019. [19] QIN X, SHEN A Q, GUO Y C, et al. Characterization of asphalt mastics reinforced with basalt fibers[J]. Construction and Building Materials, 2018, 159: 508-516. [20] LUO D, KHATER A, YUE Y C, et al. The performance of asphalt mixtures modified with lignin fiber and glass fiber: a review[J]. Construction and Building Materials, 2019, 209: 377-387. [21] 许淳. 玻璃纤维—硅藻土复合改性沥青混凝土性能研究[D]. 长春: 吉林大学, 2010. XU Chun. Study on properties of glass fiber-diatomite composite modified asphalt concrete[D]. Changchun: Jilin University, 2010. [22] KADLA J F, KUBO S, VENDITTI R A, et al. Lignin-based carbon fibers for composite fiber applications[J]. Carbon, 2002, 40(15): 2913-2920. [23] 吴萌萌. 纤维沥青胶浆及其混合料路用性能研究[D]. 东营: 中国石油大学(华东), 2015. WU Mengmeng. Study on road performance of fiber asphalt mortar and its mixture[D]. Dongying: China University of Petroleum (Huadong), 2015. [24] MCDANIEL R. Fiber additives in asphalt mixtures[J].nchrp synthesis of highway practice, 2015. [25] 董洲, 吴建铨, 沈风华, 等. 聚酯纤维改性沥青路面的研究进展[J]. 合成纤维工业, 2007, 30(1): 51-54. DONG Zhou, WU Jianquan, SHEN Fenghua, et al. Research progress in polyester fibers for modified asphalt pavement[J]. China Synthetic Fiber Industry, 2007, 30(1): 51-54. [26] WANG X S, DONG B W, WANG J J. Road performance of calcium sulfate whisker and polyester fiber composite-modified asphalt mixture[J]. Advances in Materials Science and Engineering, 2020, 2020(1): 1231396. [27] KLINSKY L M G, KALOUSH K E, FARIA V C, et al. Performance characteristics of fiber modified hot mix asphalt[J]. Construction and Building Materials, 2018, 176: 747-752. [28] NOORVAND H, SALIM R, MEDINA J, et al. Effect of synthetic fiber state on mechanical performance of fiber reinforced asphalt concrete[J]. Transportation Research Record: Journal of the Transportation Research Board, 2018, 2672(28): 42-51. [29] ABTAHI S M, SHEIKHZADEH M, HEJAZI S M. Fiber-reinforced asphalt-concrete–A review[J]. Construction and Building Materials, 2010, 24(6): 871-877. [30] ALIHA M R M, RAZMI A, MANSOURIAN A. The influence of natural and synthetic fibers on low temperature mixed mode I+II fracture behavior of warm mix asphalt (WMA) materials[J]. Engineering Fracture Mechanics, 2017, 182: 322-336. [31] 封基良, 和昆, 李俊锋. 聚合物增强纤维与沥青及沥青胶浆界面粘结性能研究[J]. 中外公路, 2011, 31(6): 249-253. FENG Jiliang, HE Kun, LI Junfeng. Study on interfacial bonding properties of polymer reinforced fiber with asphalt and asphalt mortar[J]. Journal of China & Foreign Highway, 2011, 31(6): 249-253. [32] YANG Z X, ZHANG Y, SHI X M. Impact of nanoclay and carbon microfiber in combating the deterioration of asphalt concrete by non-chloride deicers[J]. Construction and Building Materials, 2018, 160: 514-525. [33] KIM M J, KIM S, YOO D Y, et al. Enhancing mechanical properties of asphalt concrete using synthetic fibers[J]. Construction and Building Materials, 2018, 178: 233-243. [34] BIJWE J. Composites as friction materials: recent developments in non-asbestos fiber reinforced friction materials—a review[J]. Polymer Composites, 1997, 18(3): 378-396. [35] 刘莉萍, 杜婷, 王慧颖, 等. 短切碳纤维改性沥青混合料及其路用性能研究[J]. 公路, 2022, 67(8): 64-68. LIU Liping, DU Ting, WANG Huiying, et al. Study on short carbon fiber Modified Asphalt Mixture and Its Road Performance[J]. Highway, 2022, 67(8): 64-68. [36] YAO L Y, HU Y P, MA Q, et al. Stability of asphalt binder and asphalt mixture modified by polyacrylonitrile fibers[J]. Advanced Materials Research, 2011, 228/229: 242-247. [37]CHEN H X,XU Q W,CHEN S F,etal.Evaluation and design of fiber‑reinforced asphalt mixtures [J].Materials and Design ,2009,30:2595‑2603. [38] XING X Y, CHEN S H, LI Y, et al. Effect of different fibers on the properties of asphalt mastics[J]. Construction and Building Materials, 2020, 262: 120005. [39] KOU C J, CHEN Z K, KANG A H, et al. Rheological behaviors of asphalt binders reinforced by various fibers[J]. Construction and Building Materials, 2022, 323: 126626. [40] 徐秀维. 聚酯纤维对沥青混凝土路用性能的贡献研究[J]. 中外公路, 2013, 33(5): 306-310. XU Xiuwei. Study on the contribution of polyester fiber to asphalt concrete pavement performance[J]. Journal of China & Foreign Highway, 2013, 33(5): 306-310. [41]NOORVAND H ,MAMLOUK M ,KALOUSH K .Evaluation of optimum fiber lengthin fiber‑reinforced asphalt concrete [J].Journal of Materials in Civil Engineering ,2022,34(3):49401‑49412. [42] 杨硕, 解长渊, 聂佳佳. 钢纤维掺量对钢渣沥青混合料路用性能影响研究[J]. 公路工程, 2019, 44(6): 223-227. YANG Shuo, XIE Changyuan, NIE Jiajia. Study on the effect of steel fiber content on road performance of steel slag asphalt mixture[J]. Highway Engineering, 2019, 44(6): 223-227. [43] 蒋梦雅, 刘颀楠, 卢峰. 玻璃纤维对沥青混合料路用性能的影响[J]. 公路, 2021, 66(7): 63-69. JIANG Mengya, LIU Qinan, LU Feng. Influence of glass fiber mixture on road performance[J]. Highway, 2021, 66(7): 63-69. [44] ZAREI A, ZAREI M, JANMOHAMMADI O. Evaluation of the effect of lignin and glass fiber on the technical properties of asphalt mixtures[J]. Arabian Journal for Science and Engineering, 2019, 44(5): 4085-4094. [45] QIAN S Z, MA H, FENG J L, et al. Fiber reinforcing effect on asphalt binder under low temperature[J]. Construction and Building Materials, 2014, 61: 120-124. [46] XING X Y, PEI J Z, SHEN C C, et al. Performance and reinforcement mechanism of modified asphalt binders with nano-particles, whiskers, and fibers[J]. Applied Sciences, 2019, 9(15): 2995. [47] SALIANI S S, TAVASSOTI P, BAAJ H, et al. Characterization of asphalt mixtures produced with short Pulp Aramid fiber (PAF)[J]. Construction and Building Materials, 2021, 280: 122554. [48] SANTONI R L, TINGLE J S, WEBSTER S L. Engineering properties of sand-fiber mixtures for road construction[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(3): 258-268. [49] FIORE V, SCALICI T, DI BELLA G, et al. A review on basalt fibre and its composites[J]. Composites Part B: Engineering, 2015, 74: 74-94. [50] KOGAN F M, NIKITINA O V. Solubility of chrysotile asbestos and basalt fibers in relation to their fibrogenic and carcinogenic action[J]. Environmental Health Perspectives, 1994, 102(suppl 5): 205-206. [51] 王文奇, 石银峰, 谢远新, 等. 玄武岩矿物纤维在沥青玛蹄脂碎石混合料中的应用技术及施工工艺研究[J]. 施工技术, 2014, 43(S2): 268-271. WANG Wenqi, SHI Yinfeng, XIE Yuanxin, et al. Research on the application of basalt mineral fiber in stone mastic asphalt and its construction technology[J]. Construction Technology, 2014, 43(S2): 268-271. [52] 马峰, 闫志彬, 傅珍, 等. 基于响应曲面法的玄武岩纤维沥青混合料设计及路用性能研究[J]. 功能材料, 2021, 52(12): 12137-12142+12151. MA Feng, YAN Zhibin, FU Zhen, et al. Basalt fiber asphalt mixture design and road performance research based on response surface methodology[J]. Journal of Functional Materials, 2021, 52(12): 12137-12142+12151. [53] LI Z N, SHEN A Q, WANG H, et al. Effect of basalt fiber on the low-temperature performance of an asphalt mixture in a heavily frozen area[J]. Construction and Building Materials, 2020, 253: 119080. [54] 申爱琴, 龙虹均, 郭寅川, 等. 基于反射裂缝防治的玄武岩经编纤维布阻裂性能研究[J]. 硅酸盐通报, 2021, 40(12): 4151-4157+4166. SHEN Aiqin, LONG Hongjun, GUO Yinchuan, et al. Anti-cracking performance of basalt warp knitted fiber cloth based on reflection crack prevention[J]. Bulletin of the Chinese Ceramic Society, 2021, 40(12): 4151-4157+4166. [55] HUI Y X, MEN G Y, XIAO P, et al. Recent advances in basalt fiber reinforced asphalt mixture for pavement applications[J]. Materials, 2022, 15(19): 6826. [56] LIU L, LIU Z H, LIU J Y. Effects of silane-coupling agent pretreatment on basalt fibers: analyzing the impact on interfacial properties and road performance[J]. Journal of Materials in Civil Engineering, 2020, 32(4): 04020041. [57] LOU K K, XIAO P, TANG Q, et al. Research on the micro-nano characteristic of basalt fiber and its impact on the performance of relevant asphalt mastic[J]. Construction and Building Materials, 2022, 318: 126048. [58] LU Z F, KONG L, HE Z Y, et al. Modification mechanism and rheological properties of emulsified asphalt evaporative residues reinforced by coupling-modified fiber[J]. Materials, 2021, 14(23): 7363. [59]ALDEA C,DARLING J.Effect of coating on fiber glas sgeogrid performance [C].Fifth International RILEM Conference on Reflective Crackingi nPavements ,2004. [60] 郭庆林, 王红雨, 高颖, 等. 短切柔性纤维对密实型沥青混凝土断裂特性的影响[J]. 科学技术与工程, 2020, 20(13): 5377-5382. GUO Qinglin, WANG Hongyu, GAO Ying, et al. Effect of chopped flexible fibers on the fracture characteristics of dense asphalt concrete[J]. Science Technology and Engineering, 2020, 20(13): 5377-5382. [61]LUO D, KHATER A, YUE Y C, et al. The performance of asphalt mixtures modified with lignin fiber and glass fiber: a review[J]. Construction and Building Materials, 2019, 209: 377-387. [62] MOREA F, ZERBINO R. Improvement of asphalt mixture performance with glass macro-fibers[J]. Construction and Building Materials, 2018, 164: 113-120. [63] 张争奇, 雷宗建, 杨博. 玻璃纤维沥青桥面防水黏结层的性能研究[J]. 公路, 2011, 56(9): 34-37. ZHANG Zhengqi, LEI Zongjian, YANG Bo. Study on performance of waterproof adhesive layer of glass fiber asphalt bridge deck[J]. Highway, 2011, 56(9): 34-37. [64] ZIARI H, ALIHA M R M, MONIRI A, et al. Crack resistance of hot mix asphalt containing different percentages of reclaimed asphalt pavement and glass fiber[J]. Construction and Building Materials, 2020, 230: 117015. [65] THAKUR V K, THAKUR M K. Recent advances in green hydrogels from lignin: a review[J]. International Journal of Biological Macromolecules, 2015, 72: 834-847. [66]ZHANG Y,WANG X C ,JI G Y,et al.Mechanical performance characterization of lignin‑modified asphalt mixture[J].Applied Sciences‑Basel ,2020,10(9):3324. [67] SHENG Y P, LI H B, GUO P, et al. Effect of fibers on mixture design of stone matrix asphalt[J]. Applied Sciences, 2017, 7(3): 297. [68] LIU K F, LI T, WU C F, et al. Bamboo fiber has engineering properties and performance suitable as reinforcement for asphalt mixture[J]. Construction and Building Materials, 2021, 290: 123240. [69] NORGBEY E, HUANG J Y, HIRSCH V, et al. Unravelling the efficient use of waste lignin as a bitumen modifier for sustainable roads[J]. Construction and Building Materials, 2020, 230: 116957. [70] KETEMA A, WORKU A. Review on intermolecular forces between dyes used for polyester dyeing and polyester fiber[J]. Journal of Chemistry, 2020, 2020: 6628404. [71] YAN J H, LENG Z, LING C, et al. Characterization and comparison of high-modulus asphalt mixtures produced with different methods[J]. Construction and Building Materials, 2020, 237: 117594. [72] MOHAMMED ALNADISH A, YUSRI AMAN M, YATI BINTI KATMAN H, et al. Laboratory evaluation of fiber-modified asphalt mixtures incorporating steel slag aggregates[J]. Computers, Materials & Continua, 2022, 70(3): 5967-5990. [73] 王宏. 聚酯纤维对硬质沥青混合料增柔增韧性及改性机理试验研究[J]. 公路, 2016, 61(3): 160-166. WANG Hong. Experimental study on softening and toughening of hard asphalt mixture by polyester fiber and its modification mechanism[J]. Highway, 2016, 61(3): 160-166. [74] ZHANG J W, HUANG W D, ZHANG Y, et al. Evaluating four typical fibers used for OGFC mixture modification regarding drainage, raveling, rutting and fatigue resistance[J]. Construction and Building Materials, 2020, 253: 119131. [75] 季家友. 芳纶Ⅲ表面改性及其与环氧复合体系的结构与性能研究[D]. 武汉: 武汉理工大学, 2012. JI Jiayou. Study on surface modification of aramid Ⅲ and structure and properties of its composite system with epoxy resin[D]. Wuhan: Wuhan University of Technology, 2012. [76] XING X Y, LIU T, PEI J Z, et al. Effect of fiber length and surface treatment on the performance of fiber-modified binder[J]. Construction and Building Materials, 2020, 248: 118702. [77] ZIARI H, SAGHAFI Y, MONIRI A, et al. The effect of polyolefin-aramid fibers on performance of hot mix asphalt[J]. Petroleum Science and Technology, 2020, 38(3): 170-176. [78] LI J, SU Z B, HUANG J X, et al. Performance of biomimetic coating modified fiber incorporated styrene butadiene styrene modified asphalt[J]. Journal of Applied Polymer Science, 2021, 138(10): e49967. [79] MIAO Y H, WANG T, WANG L B. Influences of interface properties on the performance of fiber-reinforced asphalt binder[J]. Polymers, 2019, 11(3): 542. [80] REN D H, MUHAMMAD Y, CHEN Y C, et al. Effect of PAN fiber with bionic layered surface structure generated in situ by Fenton reaction on performance of SBS/RP asphalt binder[J]. Construction and Building Materials, 2022, 352: 129001. [81] XING S S, MUHAMMAD Y, CHEN Y C, et al. Preparation and performance evaluation of surface-modified polyacrylonitrile fiber and SBS composite modified asphalt binder based on bionic hierarchy[J]. Construction and Building Materials, 2022, 326: 126866. [82] LI Z X, GUO T T, CHEN Y Z, et al. Study on properties of drainage SBS modified asphalt mixture with fiber[J]. Advances in Civil Engineering, 2021, 2021(1): 7846499. [83] ZHAO Q M, JING S, LU X J, et al. The properties of micro carbon fiber composite modified high-viscosity asphalts and mixtures[J]. Polymers, 2022, 14(13): 2718. [84] MOKHTARI A, MOGHADAS NEJAD F. Mechanistic approach for fiber and polymer modified SMA mixtures[J]. Construction and Building Materials, 2012, 36: 381-390. [85] 尹海燕, 王成双, 王玉婷, 等. 环氧沥青的固化反应和微观结构[J]. 高分子材料科学与工程, 2012, 28(11): 30-33. YIN Haiyan, WANG Chengshuang, WANG Yuting, et al. Cure reaction and morphology of epoxy asphalts[J]. Polymer Materials Science & Engineering, 2012, 28(11): 30-33. [86] XUE Y C, QIAN Z D. Development and performance evaluation of epoxy asphalt concrete modified with mineral fiber[J]. Construction and Building Materials, 2016, 102: 378-383. [87] 钱振东, 刘长波, 唐宗鑫, 等. 短切玄武岩纤维对环氧沥青及其混合料性能的影响[J]. 公路交通科技, 2015, 32(6): 1-5. QIAN Zhendong, LIU Changbo, TANG Zongxin, et al. Effect of basalt fiber chopped strand on performance of epoxy asphalt and its mixture[J]. Journal of Highway and Transportation Research and Development, 2015, 32(6): 1-5. [88] 张婧丽. 玄武岩短切纤维对环氧沥青及其混合料性能的影响[J]. 硅酸盐通报, 2020, 39(9): 3032-3039. ZHANG Jingli. Effect of basalt chopped fiber on performance of epoxy asphalt and its mixture[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(9): 3032-3039. [89] 王水. 聚酯纤维掺量对环氧沥青桥面铺装混合料技术性能的影响[J]. 公路工程, 2015, 40(4): 95-99. WANG Shui. Study on performance of epoxy asphalt and its mixture under difrrent polyester fiber content[J]. Highway Engineering, 2015, 40(4): 95-99. [90] 何东坡, 左惠宇. 基于流变学的玄武岩矿物纤维改性岩沥青高低温性能研究[J]. 功能材料, 2020, 51(10): 10081-10088. HE Dongpo, ZUO Huiyu. High and low temperature performance of compound modified asphalt with basalt mineral fiber and rock asphalt based on rheology[J]. Journal of Functional Materials, 2020, 51(10): 10081-10088. [91] MAHARAJ R, ALI R, RAMLOCHAN D, et al. Utilization of coir fibre as an asphalt modifier[J]. Progress in Rubber, Plastics and Recycling Technology, 2019, 35(2): 59-74. [92] WANG X S, QIU Y J, XUE S Y, et al. Study on durability of high-modulus asphalt mixture based on TLA and fibre composite modification technology[J]. International Journal of Pavement Engineering, 2018, 19(10): 930-936. [93] 李昊, 郭荣鑫, 晏永. 高模量沥青及其混合料低温性能研究进展[J]. 化工进展, 2022, 41(S1): 351-365. LI Hao, GUO Rongxin, YAN Yong. Low temperature performance of high modulus asphalt binder and mixtures: a review[J]. Chemical Industry and Engineering Progress, 2022, 41(S1): 351-365. [94] 朱春凤, 程永春, 梁春雨, 等. 硅藻土-玄武岩纤维复合改性沥青混合料路用性能试验[J]. 吉林大学学报(工学版), 2020, 50(1): 165-173. ZHU Chunfeng, CHENG Yongchun, LIANG Chunyu, et al. Road performance experiment of diatomite-basalt fiber composite modified asphalt mixture[J]. Journal of Jilin University (Engineering and Technology Edition), 2020, 50(1): 165-173. [95] 李立顶, 马桂荣, 程永春, 等. 基于DSR试验的硅藻土/玄武岩纤维复合改性沥青性能研究[J]. 材料导报, 2018, 32(S2): 484-488. LI Liding, MA Guirong, CHENG Yongchun, et al. Study on properties of diatomite/basalt fiber composite modified asphalt based on DSR test[J]. Materials Reports, 2018, 32(S2): 484-488. [96] 展宏图, 柳力. 玄武岩纤维/橡胶复合改性沥青胶浆路用性能研究[J]. 中外公路, 2020, 40(1): 253-257. ZHAN Hongtu, LIU Li. Study on mucilage performance of modified asphalt composited with basalt fiber/rubber[J]. Journal of China & Foreign Highway, 2020, 40(1): 253-257. [97] 朱兴龙, 肖鹏, 余郁, 等. 不同级配的纤维胶粉沥青混合料性能试验比较[J]. 公路工程, 2012, 37(6): 58-61+84. ZHU Xinglong, XIAO Peng, YU Yu, et al. Experiment Research and Comparison on Asphalt Mixture Modified with Crumb Rubber and Fiber with different gradation[J]. Highway Engineering, 2012, 37(6): 58-61+84. [98] 朱兴龙, 肖鹏, 余郁, 等. 纤维胶粉复合改性沥青混合料性能试验研究[J]. 公路, 2012, 57(9): 159-164. ZHU Xinglong, XIAO Peng, YU Yu, et al. Experiment and research on performance of asphalt mixture modified with crumb rubber and fiber[J]. Highway, 2012, 57(9): 159-164. [99] 肖军, 尹强, 姜克锦, 等. 复掺纤维改善高黏弹改性透水沥青混合料性能试验研究[J]. 公路, 2022, 67(8): 380-385. XIAO Jun, YIN Qiang, JIANG Kejin, et al. Experimental study on improving the performance of high viscoelastic modified permeable asphalt mixture by adding fiber[J]. Highway, 2022, 67(8): 380-385. [100] KOU C J, WU X, XIAO P, et al. Physical, rheological, and morphological properties of asphalt reinforced by basalt fiber and lignin fiber[J]. Materials, 2020, 13(11): 2520. [101] XIA Y F, JIA J, CHEN Q. Road performance comprehensive evaluation of polymer modified emulsified asphalt fiber microsurfacing[J]. Advances in Materials Science and Engineering, 2022, 2022: 8179137. [102] 顾晓燕, 高剑飞, 李惠翔. 聚酯纤维用于环氧树脂沥青混合料增柔及增韧技术研究[J]. 中外公路, 2022, 42(3): 247-250. GU Xiaoyan, GAO Jianfei, LI Huixiang. Study on technology of toughening and toughening of epoxy resin asphalt mixture with polyester fiber[J]. Journal of China & Foreign Highway, 2022, 42(3): 247-250. [103] SUN Y F, ZHANG Y G, XU K, et al. Thermal, mechanical properties, and low-temperature performance of fibrous nanoclay-reinforced epoxy asphalt composites and their concretes[J]. Journal of Applied Polymer Science, 2015, 132(12): e41694. [104] 李建亮. BRA复配纤维改性沥青混合料的技术性能与机理研究[J]. 新型建筑材料, 2018, 45(8): 49-54. LI Jianliang. Technical performance and mechanism of BRA compound fiber modified asphalt mixture[J]. New Building Materials, 2018, 45(8): 49-54. [105] 乔彦春. 基于TLA与纤维复合改性技术高模量沥青混合料耐久性试验研究[J]. 公路工程, 2015, 40(5): 155-160+175. QIAO Yanchun. Study on endurable of high modulus asphalt mixture based on TLA and fiber composite modification technology[J]. Highway Engineering, 2015, 40(5): 155-160+175. [106] 孙晓. 硅藻土/玄武岩纤维复合改性沥青与沥青混合料性能研究[J]. 新型建筑材料, 2019, 46(12): 90-94. SUN Xiao. Study on properties of diatomite and basalt fiber composite modified asphalt and asphalt mixture[J]. New Building Materials, 2019, 46(12): 90-94. [107] ABDELSALAM M, YUE Y C, KHATER A, et al. Laboratory study on the performance of asphalt mixes modified with a novel composite of diatomite powder and lignin fiber[J]. Applied Sciences, 2020, 10(16): 5517. [108] 哈斯图雅. 木质素与橡胶粉复合改性沥青混合料路用性能研究[J]. 公路工程, 2014, 39(6): 170-174. HA Situya. The road performance of lignin and rubber powder composite modified asphalt mixture[J]. Highway Engineering, 2014, 39(6): 170-174.

Share

COinS