•  
  •  
 

Abstract

In view of problems such as low efficiency, poor accuracy, and imprecise three-dimensional (3D) location of defects in apparent defect inspection of bridges, this paper proposed a method for apparent defect inspection of bridges based on a 3D reconstruction model. By taking the indoor rectangular beam as the object, a three-dimensional bridge model was established, and its accuracy was verified. Then, based on the point cloud data derived from the model, a program was written in Python to realize the identification, measurement, and parameter derivation of apparent defects of bridges. Dade Bridge in Kunming, Yunnan Province was set as the background, and the whole-process project application was carried out. The results show that the method can focus on the automatic detection and location of apparent defects of bridges, significantly improve the inspection efficiency, visualization, and automation degree, and have a good application prospect.

Publication Date

7-14-2023

DOI

10.14048/j.issn.1671-2579.2023.03.027

First Page

171

Last Page

177

Submission Date

March 2025

Reference

[1] 交通运输部. 2020年交通运输行业发展统计公报[J]. 交通财会, 2021(6): 92-96+封3. Ministry of Transport of People’s Republic of China.Statistical bulletin on the development of transportation industry in 2020[J]. Finance & Accounting for Communications, 2021(6): 92-96+F0003. [2] 贺拴海, 赵祥模, 马建, 等. 公路桥梁检测及评价技术综述[J]. 中国公路学报, 2017, 30(11): 63-80. HE Shuanhai, ZHAO Xiangmo, MA Jian, et al. Review of highway bridge inspection and condition assessment[J]. China Journal of Highway and Transport, 2017, 30(11): 63-80. [3] 刘海源. 非量测数码相机近景摄影测量技术在工程中的应用[D]. 重庆: 重庆大学, 2011. LIU Haiyuan. Application of close-range photogrammetry technology of non-metric digital camera in engineering[D]. Chongqing: Chongqing University, 2011. [4] 李海洋. 基于数字摄影测量理论的构筑物模型形变测量方法研究[D]. 成都: 西南交通大学, 2018. LI Haiyang. Research on deformation measurement method of building model based on digital photogrammetry theory[D]. Chengdu: Southwest Jiaotong University, 2018. [5] 张松雷. 近景摄影测量方法在桥梁线形监测上的应用[J]. 自动化与仪器仪表, 2016(12): 53-54+57. ZHANG Songlei. The ApplicationsC lose-range photogrammetry in linear bridge monitoring[J]. Automation & Instrumentation, 2016(12): 53-54+57. [6] 胡兴意, 陈波, 刘国强, 等. 融合BIM与影像建模技术的桥梁检测方法及其应用研究[J]. 中外公路, 2020, 40(1): 107-112. HU Xingyi, CHEN Bo, LIU Guoqiang, et al. Research on bridge detection method and application integrating BIM and image modeling technology[J]. Journal of China & Foreign Highway, 2020, 40(1): 107-112. [7] 颜鲁鹏, 吴逸飞, 陈波, 等. 融合BIM与现实捕捉技术的高速公路病害检测信息化技术研究[J]. 中外公路, 2020, 40(2): 300-306. YAN Lupeng, WU Yifei, CHEN Bo, et al. Research on information technology in highway defect inspection based on BIM and reality capture technology[J]. Journal of China & Foreign Highway, 2020, 40(2): 300-306. [8] 高俊祥. 基于图像处理和机器学习的桥梁检测新技术研究[D]. 南京: 东南大学, 2018. GAO Junxiang. Research on new bridge detection technology based on image processing and machine learning[D]. Nanjing: Southeast University, 2018. [9] 苏琦, 刘佰鑫, 王权权, 等. 基于多旋翼无人机的桥梁外观检测技术及工程应用研究[J]. 预应力技术, 2017(5): 7-11. SU Qi, LIU Baixin, WANG Quanquan, et al. Research on bridge appearance inspection technology and engineering application based on multi-rotor UAV[J].Prestressing Technology,2017(5): 7-11. [10] 陈榕峰, 徐群丽, 秦凯强. 桥梁裂缝智能检测系统的研究新进展[J]. 公路, 2019, 64(5): 101-105. CHEN Rongfeng, XU Qunli, QIN Kaiqiang. Research progress of intelligent detection system for bridge cracks[J]. Highway, 2019, 64(5): 101-105. [11] 李灏天, 陈晓冬, 徐怀远, 等. 基于Bilateral-Frangi滤波的桥梁裂缝检测算法[J]. 激光与光电子学进展, 2019, 56(18): 181401. LI Haotian, CHEN Xiaodong, XU Huaiyuan, et al. Bridge crack detection algorithm based on bilateral-frangi filter[J]. Laser & Optoelectronics Progress, 2019, 56(18): 181401. [12] 周志祥, 姜腾蛟, 唐亮, 等. 移动式三维激光扫描系统在桥面全息变形监测的应用研究[J]. 应用基础与工程科学学报, 2018, 26(5): 1078-1091. ZHOU Zhixiang, JIANG Tengjiao, TANG Liang, et al. Application of mobile three-dimensional laser scanning system in bridge deformation monitoring[J]. Journal of Basic Science and Engineering, 2018, 26(5): 1078-1091. [13] 缪盾, 吴竞. 基于AgisoftPhotoscan的图像三维重建及精度研究[J]. 测绘工程, 2017, 26(8): 41-44. MIAO Dun, WU Jing. Research on 3D image reconstruction and accuracy of based on Agisoft Photoscan[J]. Engineering of Surveying and Mapping, 2017, 26(8): 41-44. [14] 董湘婉, 袁向荣, 任张晨, 等. 数字图像技术在三等跨连续梁振动分析中的运用[J]. 实验室研究与探索, 2018, 37(3): 14-16. DONG Xiangwan, YUAN Xiangrong, REN Zhangchen, et al. Application of digital image technology to vibration analysis of three span continuous beam[J]. Research and Exploration in Laboratory, 2018, 37(3): 14-16. [15] SMEC South Africa.Provision of consulting services for the design and construction supervision of informal area metering within eThekwini municipality[J].Civil Engineering,2019,27(11):33. [16] 姚华, 杜松. 近景摄影测量技术应用于桥梁检测的试验研究[J]. 北方交通, 2019(5): 43-45+49. YAO Hua, DU Song. Experimental research on application of close-range photogrammetry technology in bridge detection[J]. Northern Communications, 2019(5): 43-45+49. [17] 段浪.基于数码相机的桥梁缺陷尺寸测量技术研究[C]//中国土木工程学会2016年学术年会论文集,2016:347‑ 356. DUAN Lang. Research on bridge defect size measurement technology based on digital camera[C]// Proceedings of the 2016 Annual Academic Conference of the Chinese Society of Civil Engineering,2016:347- 356. [18] 魏文龙, 刘森森. 基于轻量化神经网络的桥梁裂缝识别检测[J]. 南方农机, 2020, 51(21): 125-126. WEI Wenlong, LIU Sensen. Identification and detection of bridge cracks based on lightweight neural network[J]. China Southern Agricultural Machinery, 2020, 51(21): 125-126. [19] 项小伟. 近景摄影辅助倾斜摄影的影像匹配及三维建模研究[D]. 太原: 太原理工大学, 2019. XIANG Xiaowei. Research on image matching and 3D modeling of close-range photography assisted tilting photography[D]. Taiyuan: Taiyuan University of Technology, 2019. [20] 李良福, 冯建云, 宋睿. 基于图像重生成的桥梁裂缝检测方法研究[J]. 光电子·激光, 2019, 30(12): 1298-1308. LI Liangfu, FENG Jianyun, SONG Rui. Research on bridge crack detection method based on image regeneration[J]. Journal of Optoelectronics·Laser, 2019, 30(12): 1298-1308.

Share

COinS