Abstract
In order to study the effects of temperature and light on the characteristics of asphalt emissions, atmospheric pressure chemical ionization–time-of-flight mass spectrometer (APCI‑TOF MS) and electron impact ionization mass spectrometry (EI‑MS) were used to quantitatively characterize the composition information of PG 62-22 asphalt emissions at different temperatures (40–200 °C). The effects of different temperatures and light on total emission factor, SOA conversion factor, intermediate volatile organic compound (IVOC)/semi-volatile organic compound (SVOC) volume fraction, and aromatics volume fraction of asphalt emissions were studied. The results show that the components of asphalt emissions change with temperature, and the components are complex and varied, including anthracene, naphthalene, pyrene, fluoranthrene, and other harmful substances to the human body and environment. The emission factor and SOA conversion factor of asphalt increase with the increase in temperature. When the temperature is lower than 140 °C, the emission factor and SOA conversion factor of asphalt have strong temperature sensitivity. With the increase in temperature and light duration, the proportion of IVOC gradually decreases, and the proportion of SVOC gradually increases. The light causes the asphalt to release more PAHs.
Publication Date
7-14-2023
DOI
10.14048/j.issn.1671-2579.2023.03.033
First Page
212
Last Page
217
Submission Date
March 2025
Recommended Citation
Xuwei, ZHU and Bo, TIAN
(2023)
"Effect of temperature and light on characteristics of asphalt emissions,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
3, Article 33.
DOI: 10.14048/j.issn.1671-2579.2023.03.033
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss3/33
Reference
[1] 侯梦阳. 高速公路沥青路面预防性养护[J]. 交通世界, 2021(36): 84-85. HOU Mengyang. Preventive maintenance of expressway asphalt pavement[J]. TranspoWorld, 2021(36): 84-85. [2] 蒋忠海, 周亮兵, 郑月云. 高温天气下沥青路面温度预测研究[J]. 中外公路, 2021, 41(6): 87-89. JIANG Zhonghai, ZHOU Liangbing, ZHENG Yueyun. Study on temperature prediction of asphalt pavement in high temperature weather[J]. Journal of China & Foreign Highway, 2021, 41(6): 87-89. [3] 郭立成, 徐希忠, 曾国东, 等. 基于法国路面设计方法的全厚式沥青路面结构性能分析[J]. 中外公路, 2021, 41(6): 90-94. GUO Licheng, XU Xizhong, ZENG Guodong, et al. Structural performance analysis of full thickness asphalt pavement based on French pavement design method[J]. Journal of China & Foreign Highway, 2021, 41(6): 90-94. [4] 王耀, 周敬, 杨坤, 等. 波形沥青防水板作为防水层的大坡度屋面施工技术[J]. 建筑技术开发, 2021, 48(4): 41-42. WANG Yao, ZHOU Jing, YANG Kun, et al. Construction technology of large slope roof with corrugated asphalt waterproof board As waterproof layer[J]. Building Technology Development, 2021, 48(4): 41-42. [5] 金立新, 徐凤. 波形沥青板坡屋面防水保温系统施工技术研究[J]. 建筑技术开发, 2021, 48(12): 71-72. JIN Lixin, XU Feng. Research on construction technology of waterproof and thermal insulation system of roof with corrugated asphalt plate slope[J]. Building Technology Development, 2021, 48(12): 71-72. [6] 许巍, 杨斌. SBS/橡胶粉复合改性生物沥青高温性能研究[J]. 湖南交通科技, 2021, 47(4): 77-82. XU Wei, YANG Bin . Study on high temperature properties of SBS/rubber powder composite modified biological asphalt[J]. Hunan Communication Science and Technology, 2021, 47(4): 77-82. [7] 金跃飞. 基于动态剪切流变试验的沥青高温性能评价[J]. 城市道桥与防洪, 2021(12): 170-173+21-22. JIN Yuefei. Evaluation on high temperature performance of asphalt based on dynamic shear rheological test[J]. Urban Roads Bridges & Flood Control, 2021(12): 170-173+21-22. [8] 刘云亮, 齐琳, 于海涛. 基于OGFC-13沥青混合料高温稳定性的级配优化[J]. 辽宁省交通高等专科学校学报, 2021, 23(6): 1-7. LIU Yunliang, QI Lin, YU Haitao. Gradation optimization based on high temperature stability of OGFC-13 asphalt mixture[J]. Journal of Liaoning Provincial College of Communications, 2021, 23(6): 1-7. [9] 王改霞, 董夫强, 姜萌萌, 等. SBS改性沥青高温存储过程中性能衰减机理的研究[J]. 合成材料老化与应用, 2021, 50(6): 15-18+146. WANG Gaixia, DONG Fuqiang, JIANG Mengmeng, et al. Study on performance attenuation mechanism of SBS modified asphalt during high temperature storage[J]. Synthetic Materials Aging and Application, 2021, 50(6): 15-18+146. [10] KHARE P, MACHESKY J, SOTO R, et al. Asphalt-related emissions are a major missing nontraditional source of secondary organic aerosol precursors[J]. Science Advances, 2020, 6(36): eabb9785. [11] 肖月, 常郗文, 董前坤, 等. 道路沥青材料VOCs的指纹组分及其定量分析[J]. 中国公路学报, 2020, 33(10): 276-287. XIAO Yue, CHANG Xiwen, DONG Qiankun, et al. Fingerprint components and quantitative analysis of volatile organic compounds of asphalt materials[J]. China Journal of Highway and Transport, 2020, 33(10): 276-287. [12] LEI M, WU S P, LIU G, et al. VOCs characteristics and their relation with rheological properties of base and modified bitumens at different temperatures[J]. Construction and Building Materials, 2018, 160: 794-801. [13] AUTELITANO F, BIANCHI F, GIULIANI F. Airborne emissions of asphalt/wax blends for warm mix asphalt production[J]. Journal of Cleaner Production, 2017, 164: 749-756. [14] 吴少鹏, 余嫚, 陈美祝. 沥青挥发物的研究进展[J]. 石油沥青, 2011, 25(3): 1-6. WU Shaopeng, YU Man, CHEN Meizhu. Research progress on volatile of asphalt[J]. Petroleum Asphalt, 2011, 25(3): 1-6. [15] 唐荣志, 王辉, 刘莹, 等. 大气半/中等挥发性有机物的组成及其对有机气溶胶贡献[J]. 化学进展, 2019, 31(1): 180-190. TANG Rongzhi, WANG Hui, LIU Ying, et al. Constituents of atmospheric semi-volatile and intermediate volatility organic compounds and their contribution to organic aerosol[J]. Progress in Chemistry, 2019, 31(1): 180-190. [16] LI L P, WU S P, LIU G, et al. Effect of organo-montmorillonite nanoclay on VOCs inhibition of bitumen[J]. Construction and Building Materials, 2017, 146: 429-435. [17] 邱延峻, 罗浩原, 张家康, 等. 热拌与温拌沥青路面生产施工排放物对比[J]. 长安大学学报(自然科学版), 2020, 40(1): 30-39. QIU Yanjun, LUO Haoyuan, ZHANG Jiakang, et al. Comparative of emissions from production and construction of hot mix and warm mix asphalt pavement[J]. Journal of Chang’an University (Natural Science Edition), 2020, 40(1): 30-39. [18] 龙永双, 吴少鹏, 肖月, 等. 基于PY-GC-MS的沥青VOCs挥发规律研究[J]. 武汉理工大学学报(交通科学与工程版), 2018, 42(1): 1-6. LONG Yongshuang, WU Shaopeng, XIAO Yue, et al. Volatilization law research of asphalt VOCs based on PY-GC-MS[J]. Journal of Wuhan University of Technology (Transportation Science & Engineering), 2018, 42(1): 1-6. [19] MA P K, ZHAO Y L, ROBINSON A L, et al. Evaluating the impact of new observational constraints on P-S/IVOC emissions, multi-generation oxidation, and chamber wall losses on SOA modeling for Los Angeles, CA[J]. Atmospheric Chemistry and Physics, 2017, 17(15): 9237-9259. [20] ZHAO Y L, HENNIGAN C J, MAY A A, et al. Intermediate-volatility organic compounds: a large source of secondary organic aerosol[J]. Environmental Science & Technology, 2014, 48(23): 13743-13750. [21] GENTNER D R, ISAACMAN G, WORTON D R, et al. Elucidating secondary organic aerosol from diesel and gasoline vehicles through detailed characterization of organic carbon emissions[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(45): 18318-18323.
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons