Abstract
Under the new climatic environment and engineering construction requirements, engineering problems involving red clay are becoming more and more prominent, and it is urgent to deeply grasp the mechanical and engineering properties of residual slope red clay. The typical red clay in Hunan Province was studied in this paper. Based on the unconsolidated undrained direct shear test, this paper studied the mechanical properties of residual slope red clay under the influence of moisture content and temperature, focusing on the most unfavorable conditions affecting the mechanical properties of red clay. The results show that: ① The shear strength of red clay decreases by 10%–40% with the increase in moisture content under the influence of single factor moisture content. By considering the influence of water content and temperature, the shear strength of red clay decreases with the increase in moisture content when the temperature increases. ② The cohesive force of red clay is affected by both temperature and moisture content. At the same temperature, the moisture content increases, and the cohesive force decreases by 40%–70%. Higher temperature indicates less influence of moisture content on the cohesive force. At the same moisture content, the cohesive force is the least when the temperature is 30 °C. ③ In the non-extreme temperature range (10–30 °C), the internal friction angle of red clay is mainly affected by temperature, and the internal friction angle increases by 5%–10% with the increase in temperature.
Publication Date
7-14-2023
DOI
10.14048/j.issn.1671-2579.2023.03.040
First Page
253
Last Page
258
Submission Date
March 2025
Recommended Citation
Jiangtao, WANG; Temenbaiyila, BAO; Weiguang, YANG; Qi, ZHOU; and Helin, FU
(2023)
"Analysis of influence of moisture content ⁃temperature dual factor on mechanical properties of red clay,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
3, Article 40.
DOI: 10.14048/j.issn.1671-2579.2023.03.040
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss3/40
Reference
[1] 张军辉, 邓宗煌, 刘杰, 等. 南方湿热地区既有路基快速检测方法研究[J]. 中外公路, 2019, 39(6): 6-10. ZHANG Junhui, DENG Zonghuang, LIU Jie, et al. Research on rapid detection method of existing roadbed in hot and humid region of South China[J]. Journal of China & Foreign Highway, 2019, 39(6): 6-10. [2] 席丹妮. “废弃黏土砖-红黏土” 路基填料工程特性研究[D]. 桂林: 桂林理工大学, 2021. XI Danni. Study on engineering characteristics of “waste clay brick-red clay” subgrade filler[D]. Guilin: Guilin University of Technology, 2021. [3] 杨德忠, 陈开圣, 李强. 高掺量磷石膏稳定红黏土路用性能研究[J]. 中外公路, 2022, 42(4): 185-191. YANG Dezhong, CHEN Kaisheng, LI Qiang. Study on road performance of high content phosphogypsum cement stabilized red clay[J]. Journal of China & Foreign Highway, 2022, 42(4): 185-191. [4] 罗文俊, 王海洋, 刘焕强, 等. 不同含水率红粘土的抗剪强度试验研究[J]. 华东交通大学学报, 2020, 37(1): 119-126. LUO Wenjun, WANG Haiyang, LIU Huanqiang, et al. Experimental study on shear strength of red clay with different moisture content[J]. Journal of East China Jiaotong University, 2020, 37(1): 119-126. [5] 张培培, 罗保才, 刘娉慧, 等. 含水率对红粘土强度特性的影响[J]. 水力发电, 2019, 45(5): 45-49. ZHANG Peipei, LUO Baocai, LIU Pinghui, et al. Effect of water content on strength characteristics of red clay[J]. Water Power, 2019, 45(5): 45-49. [6] 张添锋, 孙德安, 刘文捷. 桂林压实红粘土抗剪强度与含水率关系[J]. 上海大学学报(自然科学版), 2014, 20(5): 586-595. ZHANG Tianfeng, SUN Dean, LIU Wenjie. Relationship between shear strength and moisture content for Guilin laterite[J]. Journal of Shanghai University (Natural Science Edition), 2014, 20(5): 586-595. [7] 李怀鑫, 林斌, 陈士威, 等. 不同含水率下红黏土软化模型及强度试验研究[J]. 黄金科学技术, 2020, 28(3): 442-449. LI Huaixin, LIN Bin, CHEN Shiwei, et al. Study on the softening model and strength of red clay at different water content[J]. Gold Science and Technology, 2020, 28(3): 442-449. [8] 吴昱东. 含水率对红黏土物理力学性质的影响及微观机制研究[D]. 桂林: 桂林理工大学, 2019. WU Yudong. Effect of moisture content on physical and mechanical properties of red clay and its micro-mechanism[D]. Guilin: Guilin University of Technology, 2019. [9] 谭罗荣, 孔令伟. 某类红粘土的基本特性与微观结构模型[J]. 岩土工程学报, 2001, 23(4): 458-462. TAN Luorong, KONG Lingwei. Fundamental property and microstructure model of red clay[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 458-462. [10] 王云龙. 不同初始含水率红黏土蒸发实验研究[J]. 中国水运(下半月), 2020(10): 216+219. WANG Yunlong. Experimental study on evaporation of red clay with different initial moisture content[J]. China Water Transport, 2020(10): 216+219. [11] 常留成. 红黏土工程特性的温度效应试验研究[D]. 抚州: 东华理工大学, 2018. CHANG Liucheng. Experimental study on temperature effect of engineering characteristics of red clay[D]. Fuzhou: East China Institute of Technology, 2018. [12] 多会会, 胡艳香, 李炀, 等. 温度梯度下红黏土的强度特性变化规律[J]. 土工基础, 2020, 34(2): 204-207. DUO Huihui, HU Yanxiang, LI Yang, et al. Variation of strength characteristics of red clay under temperature gradient[J]. Soil Engineering and Foundation, 2020, 34(2): 204-207. [13] 蒲黍絛. 含水率对不同状态红黏土抗剪强度的影响研究[J]. 贵州大学学报(自然科学版), 2019, 36(4): 93-100. PU Shutao. Effect of water content on the shear strength of red clay in different plasticity[J]. Journal of Guizhou University (Natural Sciences), 2019, 36(4): 93-100. [14] 李海龙. 分析含水率对红黏土强度特性影响[J]. 粘接, 2020, 47(3): 111-114+154. LI Hailong. Analysis of the effect of moisture content on the strength characteristics of red clay[J]. Adhesion, 2020, 47(3): 111-114+154. [15] 董金玉, 赵亚文. 不同含水率下高低液塑限红黏土抗剪强度特性研究[J]. 华北水利水电大学学报(自然科学版), 2018, 39(3): 84-87. DONG Jinyu, ZHAO Yawen. Study on shear strength of high and low liquid plastic limit red clay with different water contents[J]. Journal of North China University of Water Resources and Electric Power (Natural Science Edition), 2018, 39(3): 84-87. [16] 肖丽娜, 黄质宏, 何逢春, 等. 上覆荷载作用下红黏土抗剪强度变化规律研究[J]. 河南理工大学学报(自然科学版), 2021, 40(3): 156-162. XIAO Lina, HUANG Zhihong, HE Fengchun, et al. Study on the change law of shear strength of red clay under overburden load[J]. Journal of Henan Polytechnic University (Natural Science), 2021, 40(3): 156-162. [17] 唐静, 丁启龙. 改性预崩解炭质泥岩强度特性及微观机理分析[J]. 交通科学与工程, 2021, 37(1): 13-18. TANG Jing, DING Qilong. Analysis of strength characteristics and microscopic mechanism of modified disintegrated carbonaceous mudstone[J]. Journal of Transport Science and Engineering, 2021, 37(1): 13-18. [18] 陈鸿宾, 陈学军, 齐运来, 等. 干密度与含水率对重塑红黏土抗剪强度参数影响研究[J]. 工程地质学报, 2019, 27(5): 1035-1040. CHEN Hongbin, CHEN Xuejun, QI Yunlai, et al. Effects of dry density and moisture content on shear strength parameters of remolded red clay soil[J]. Journal of Engineering Geology, 2019, 27(5): 1035-1040. [19] 卢博, 陈群, 陈秀强, 等. 压实度对高液限黏土路堤稳定性的影响[J]. 中外公路, 2018, 38(1): 21-25. LU Bo, CHEN Qun, CHEN Xiuqiang, et al. Effect of compactness on stability of high liquid limit clay embankment[J]. Journal of China & Foreign Highway, 2018, 38(1): 21-25. [20] 樊小林. 干湿循环作用对山区营运高速公路低液限黏土路堤边坡稳定性影响分析[D]. 长沙: 长沙理工大学, 2021. FAN Xiaolin. Analysis on the influence of dry-wet cycle on the stability of low liquid limit clay embankment slope of mountainous expressway[D]. Changsha: Changsha University of Science & Technology, 2021. [21] 中华人民共和国交通运输部. 公路土工试验规程: JTG 3430—2020[S]. 北京: 人民交通出版社, 2020. Test Methods of Soils for Highway Engineering: JTG 3430—2020[S]. Beijing: China Communications Press, 2020. [22] 李广信. 高等土力学[M]. 2版. 北京: 清华大学出版社, 2016. LI Guangxin. Advanced Soil Mechanics seconf edition[M]. 2nd ed. Beijing: Tsinghua University Press, 2016. [23] 马琳. 游离氧化铁对花岗岩残积红土强度增长的试验及本构模型研究[D]. 长春: 吉林大学, 2007. MA Lin. Experimental study and constitutive model of free iron oxide on strength growth of granite residual laterite[D]. Changchun: Jilin University, 2007.
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons