Abstract
The denudation per unit area, relative dynamic elastic modulus, mechanical strength, and fracture characteristics of concrete with different nano-metakaolin contents before and after freezing and thawing were studied. The results show that nano-metakaolin can significantly improve the freezing resistance of concrete, and the denudation per unit area and relative dynamic elastic modulus loss rate of modified concrete are significantly improved compared with the reference group. The mechanical strength and fracture properties of nano-mekaolin-modified concrete before and after freezing and thawing are higher than those of the control group, and the mechanical strength, fracture toughness, and fracture energy loss rate are smaller after freezing and thawing cycles. At the same time, they increase first and then decrease with the increase in nano-metakaolin content, and the peak cracking load of about 40% can be increased at 6% content of nano-metakaolin. After 60 freezing-thawing cycles, the compressive strength and flexural tensile strength of concrete are increased by 68.36% and 70.28%, respectively, compared with the control group, and the bearing capacity of concrete during fracture instability is still greatly improved compared with the control group.
Publication Date
7-14-2023
DOI
10.14048/j.issn.1671-2579.2023.03.042
First Page
265
Last Page
269
Submission Date
March 2025
Recommended Citation
Zhenfa, LI
(2023)
"Effect of nano ⁃metakaolin on frost resistance of concrete,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
3, Article 42.
DOI: 10.14048/j.issn.1671-2579.2023.03.042
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss3/42
Reference
[1] 申爱琴. 道路工程材料[M]. 2版. 北京: 人民交通出版社, 2016. SHEN Aiqin. Road engineering materials[M]. 2nd ed. Beijing: China Communications Press, 2016. [2] 李宗津, 孙伟, 潘金龙. 现代混凝土的研究进展[J]. 中国材料进展, 2009, 28(11): 1-7+53. LI Zongjin, SUN Wei, PAN Jinlong. New development of contemporary concrete[J]. Materials China, 2009, 28(11): 1-7+53. [3] 覃潇, 申爱琴, 郭寅川, 等. 多场耦合下路面混凝土细观裂缝的演化规律[J]. 华南理工大学学报(自然科学版), 2017, 45(6): 81-88+102. QIN Xiao, SHEN Aiqin, GUO Yinchuan, et al. Evolution rule of microcosmic cracks in pavement concrete under multi-field coupling[J]. Journal of South China University of Technology (Natural Science Edition), 2017, 45(6): 81-88+102. [4] 孙国文, 孙伟, 王彩辉. 现代混凝土传输行为与其微结构之间关系的研究方法及其进展[J]. 材料导报, 2018, 32(17): 3010-3022. SUN Guowen, SUN Wei, WANG Caihui. Relationship between the transport behavior of modern concrete and its microstructures: research methods and progress[J]. Materials Review, 2018, 32(17): 3010-3022. [5] 姚嘉诚, 延永东, 徐鹏飞, 等. 水泥基渗透结晶型防水材料和纳米二氧化硅改性混凝土自修复性能的研究[J]. 硅酸盐通报, 2020, 39(6): 1772-1777. YAO Jiacheng, YAN Yongdong, XU Pengfei, et al. Self-healing properties of concrete modified by cementitious capillary crystalline waterproofing and nano-silica[J]. Bulletin of the Chinese Ceramic Society, 2020, 39(6): 1772-1777. [6] 崔航源. 纳米改性提升混凝土无机涂层氯盐抗力的研究[D]. 徐州: 中国矿业大学, 2020. CUI Hangyuan. Study on nano-modification to improve chloride resistance of inorganic coating of concrete[D]. Xuzhou: China University of Mining and Technology, 2020. [7] 王子嘉. 偏高岭土在水泥基材料中应用的研究进展[J]. 硅酸盐通报, 2013, 32(7): 1323-1329. WANG Zijia. Research progress on application of metakaolin in the field of cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2013, 32(7): 1323-1329. [8] 殷海荣, 武丽华, 陈福, 等. 纳米高岭土的研究与应用[J]. 材料导报, 2006, 20(S1): 196-199. YIN Hairong, WU Lihua, CHEN Fu, et al. Research and application of nanokaolin[J]. Materials Reports, 2006, 20(S1): 196-199. [9] 詹培敏, 于周平, 孙斌祥, 等. 纳米高岭土在水泥基材料中的应用与研究进展[J]. 硅酸盐通报, 2019, 38(5): 1420-1424+1432. ZHAN Peimin, YU Zhouping, SUN Binxiang, et al. Application and research progress of nano-Kaolin in the cementitious materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(5): 1420-1424+1432. [10] 张世义. 纳米偏高岭土水泥基材料物理力学性能及耐久性研究[D]. 大连: 大连海事大学, 2016. ZHANG Shiyi. Study on physical and mechanical properties and durability of nano metakaolin cement-based materials[D]. Dalian: Dalian Maritime University, 2016. [11] 张均良. 纳米偏高岭土水泥砂浆断裂性能试验研究[D]. 大连: 大连海事大学, 2020. ZHANG Junliang. Experimental study on fracture properties of nano metakaolin cement mortar[D]. Dalian: Dalian Maritime University, 2020. [12] 王迪. 基于CT扫描的纳米偏高岭土混凝土力学性能数值模拟[D]. 大连: 大连海事大学, 2020. WANG Di. Numerical simulation of mechanical properties of nano metakaolin concrete based on CT scanning[D]. Dalian: Dalian Maritime University, 2020. [13] 范颖芳, 张均良, 李秋超. 纳米偏高岭土对水泥砂浆断裂性能影响的试验研究[J]. 东南大学学报(自然科学版), 2020, 50(4): 637-644. FAN Yingfang, ZHANG Junliang, LI Qiuchao. Experimental study on the effect of nano-metakaolin on the fracture behavior of cement mortar[J]. Journal of Southeast University (Natural Science Edition), 2020, 50(4): 637-644. [14] 郭晓玉, 张世义, 范颖芳. 纳米偏高岭土砂浆氯离子渗透性的试验研究[J]. 广西大学学报(自然科学版), 2017, 42(4): 1526-1534. GUO Xiaoyu, ZHANG Shiyi, FAN Yingfang. Experimental study on chloride permeability of nano metakaolin mortar[J]. Journal of Guangxi University (Natural Science Edition), 2017, 42(4): 1526-1534. [15] 范颖芳, 张世义. 纳米高岭土颗粒改性水泥基复合材料的性能[J]. 土木建筑与环境工程, 2014, 36(1): 130-137. FAN Yingfang, ZHANG Shiyi. Mechanical and chloride diffusion behavior of kaolinite clay modified cement-based material[J]. Journal of Civil, Architectural & Environmental Engineering, 2014, 36(1): 130-137. [16] 张世义, 范颖芳, 李宁宁. 纳米高岭土改性砂浆抗酸雨侵蚀试验研究[J]. 东南大学学报(自然科学版), 2014, 44(3): 668-672. ZHANG Shiyi, FAN Yingfang, LI Ningning. Experimental study on acid resistance of nano-kaolinite modified cement mortar[J]. Journal of Southeast University (Natural Science Edition), 2014, 44(3): 668-672. [17] Standard Test Method for Scaling Resistance of Concrete Surfaces Exposed to Deicing Chemicals: ASTM C672/C672M-03[S]. ASTM International[astm], . [18] SABIR B B, WILD S, BAI J. Metakaolin and calcined clays as pozzolans for concrete: a review[J]. Cement and Concrete Composites, 2001, 23(6): 441-454. [19] FADZIL A M, MUHD NORHASRI M S, HAMIDAH M S, et al. Alteration of nano metakaolin for ultra high performance concrete[M]//InCIEC 2013. Singapore: Springer Singapore, 2014: 887-894. [20] FAN Y F, ZHANG S Y, KAWASHIMA S, et al. Influence of kaolinite clay on the chloride diffusion property of cement-based materials[J]. Cement and Concrete Composites, 2014, 45: 117-124. [21] MUHD NORHASRI M S, HAMIDAH M S, MOHD FADZIL A, et al. Inclusion of nano metakaolin as additive in ultra high performance concrete (UHPC)[J]. Construction and Building Materials, 2016, 127: 167-175. [22] FAN Y F, ZHANG S Y, WANG Q, et al. The effects of nano-calcined kaolinite clay on cement mortar exposed to acid deposits[J]. Construction and Building Materials, 2016, 102: 486-495. [23] 蒋晨辉, 周长顺, 吉红波, 等. 纳米偏高岭土在水泥基材料中的应用研究进展[J]. 硅酸盐通报, 2019, 38(12): 3861-3867. JIANG Chenhui, ZHOU Changshun, JI Hongbo, et al. Research progress on the application of nano-metakaolin in cement-based materials[J]. Bulletin of the Chinese Ceramic Society, 2019, 38(12): 3861-3867.
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons