Abstract
For three kinds of construction technologies of double-layer drainage pavement (traditional “hot + cold” paving technology, “hot + warm” paving technology, and “hot + hot” integrated molding technology), the discrete element method and laboratory test were used to make plate specimens and cylindrical specimens, respectively, and the interlayer morphology of double-layer drainage pavement under the three kinds of construction technologies was compared. Based on the virtual shear test and laboratory direct shear test, the effects of construction technologies and amount of adhesive oil on the interlayer shear strength of double-layer drainage pavement were analyzed. By means of visualization, the distribution law of void ratios in different layers was obtained. The results show that the interface between layers in the traditional paving technology tends to be horizontal, while the interface between layers in the other two paving technologies is staggered and squeezed. The shear strength of the interlayer interface of the double-layer drainage pavement based on the integrated molding technology is significantly higher than that of the two paving technologies. Under the three construction technologies, the void ratio of each layer basically conforms to the distribution law of smaller near the center of the specimen and larger outside the specimen. The “hot + warm” paving technology is a construction method worth exploring for the current double-layer drainage pavement.
Publication Date
7-14-2023
DOI
10.14048/j.issn.1671-2579.2023.03.007
First Page
47
Last Page
55
Submission Date
March 2025
Recommended Citation
Zhenshan, ZHANG; Gongyun, LIAO; Can, WANG; Yi, ZHANG; Yang, CAI; Xin, FANG; and Wei, WU
(2023)
"Detailed structure of double ⁃layer porous asphalt pavement under three paving technologies,"
Journal of China & Foreign Highway: Vol. 43:
Iss.
3, Article 7.
DOI: 10.14048/j.issn.1671-2579.2023.03.007
Available at:
https://zwgl1980.csust.edu.cn/journal/vol43/iss3/7
Reference
[1]HARDIMANM Y. The comparison of engineering properties between single and double layer porous asphalt made of packing gradation[J]. Clinicaland Experimental Dermatology, 2008, 10: 82-88. [2] PISCIOTTA M. Functional characteristics of double draining layer flexible pavements[J]. Transportation Research Record: Journal of the Transportation Research Board, 2009, 2101(1): 88-97. [3] POGGI A, CASINI D, FAGOTTI C, et al. Contribution of double layer asphalt in reduction of urban traffic noise[J].Internoise, 2014 [4] CHU L, FWA T F. Functional sustainability of single- and double-layer porous asphalt pavements[J]. Construction and Building Materials, 2019, 197: 436-443. [5] AFONSO M L, FAEL C S, DINIS-ALMEIDAM. Influence of clogging on the hydrologic performance of a double layer porous asphalt[J]. International Journal of Pavement Engineering, 2020, 21(6): 736-745. [6] JI Y Y, XIE J G, LIU M X. Double layer drainage performance of porous asphalt pavement[C]//International Conference on Civil, Mechanical and Material Engineering: ICCMME 2018.AIPC, 2018. [7] LIU M, HUANG X M, XUE G Q. Effects of double layer porous asphalt pavement of urban streets on noise reduction[J]. International Journal of Sustainable Built Environment, 2016, 5(1): 183-196. [8] 唐国奇. 双层排水降噪沥青路面关键技术研究[D]. 南京: 东南大学, 2015. TANG Guoqi. Research on key technologies of double-layer drainage noise reduction asphalt pavement[D]. Nanjing: Southeast University, 2015. [9] 丁露萍. 基于外掺法的布敦岩沥青改性沥青微表处室内试验研究[J]. 中外公路, 2020,40(1): 223-228. DING Luping. Laboratory experimental study on micro-surfacing of Buton rock asphalt modified asphalt based on external mixing method[J]. Journal of China & Foreign Highway, 2020, 40(1): 223-228. [10] 屈甜, 刘一濛, 谢清忠, 等. 基于抗滑性能的改进型多点支撑薄层罩面级配设计与性能研究[J]. 中外公路, 2019,39(6): 200-205. QU Tian, LIU Yimeng, XIE Qingzhong, et al. Gradation design and performance investigation on improved multi-supporting thin overlay based on skid-resistance performance[J]. Journal of China & Foreign Highway, 2019, 39(6): 200-205. [11] 余永飞, 王栋, 张征, 等. 双层一次摊铺工艺沥青路面结构层厚度分析[J]. 交通科学与工程, 2019,35(3): 18-22. YU Yongfei, WANG Dong, ZHANG Zheng, et al. Analysis on asphalt pavement thickne ss of the double-layer paving process[J]. Journal of Transport Science and Engineering, 2019, 35(3): 18-22. [12] 穆柯. 沥青路面面层双层一体摊铺技术研究[D]. 西安: 长安大学, 2012. MU Ke. Study on double-layer integrated paving technology of asphalt pavement surface layer[D]. Xi’an: Changan University, 2012. [13] 王艳丽, 张争奇, 王秉纲. 沥青混凝土路面双层摊铺技术及性能[J]. 中外公路, 2007,27(6): 66-70. WANG Yanli, ZHANG Zhengqi, WANG Binggang. Double-layer paving technology and performance of asphalt concrete pavement[J]. Journal of China & Foreign Highway, 2007, 27(6): 66-70. [14] 李海啸. 戴纳派克双层沥青摊铺技术引入中国签字仪式在上海举行[J]. 工程机械, 2006, 37(12): 104. LI Haixiao. The signing ceremony of the introduction of Dynapak double-layer asphalt paving technology into China was held in Shanghai[J]. Construction Machinery and Equipment, 2006, 37(12): 104. [15] 赵卫国. 沥青混凝土路面双层摊铺技术的施工应用[J]. 公路, 2007,52(6): 88-92. ZHAO Weiguo. Construction application of double-layer paving technology for asphalt concrete pavement[J]. Highway, 2007, 52(6): 88-92. [16] MU K, GAO Z W, SHI X, et al. Interface behavior of asphalt pavements constructed by conventional and double-decked paving methods[J]. Materials, 2020, 13(6): 1351. [17] 杨育生, 穆柯, 王选仓, 等. 沥青路面双层摊铺层间效果研究[J]. 公路交通科技(应用技术版), 2012(3): 57-58+67. YANG Yusheng, MU Ke, WANG Xuancang, et al. Study on interlayer effect of double-layer paving of asphalt pavement[J]. 1, 2012(3): 57-58+67. [18] 赵殿鹏, 杨平. 双层摊铺沥青路面层间抗剪性能试验研究[J]. 森林工程, 2016, 32(4): 61-64+96. ZHAO Dianpeng, YANG Ping. Laboratory study of shear behavior in double-layer paved asphalt pavement[J]. Forest Engineering, 2016, 32(4): 61-64+96. [19] 张垚. 基于PFC3D的沥青混合料虚拟试验研究[D]. 南京: 东南大学, 2015. ZHANG Yao. Research on virtual test of asphalt mixture based on PFC3D[D]. Nanjing: Southeast University, 2015. [20] 梁何浩, 王端宜, 邓志刚, 等. 内聚力模型在泡沫沥青混合料离散元模拟中的应用[J]. 湖南大学学报(自然科学版), 2019,46(5): 115-123. LIANG Hehao, WANG Duanyi, DENG Zhigang, et al. Application of cohesive zone model in discrete element simulation of foamed asphalt mixture[J]. Journal of Hunan University (Natural Sciences), 2019, 46(5): 115-123. [21] 李志, 李儒琼. 一种改进的快速三维凸包生成算法及实现[J]. 计算机工程与科学, 2011,33(2): 129-132. LI Zhi, LI Ruqiong. An improved algorithm and implementation of three-dimensional convex hulls[J]. Computer Engineering & Science, 2011, 33(2): 129-132. [22] 李晓龙, 沈菊男, 杜辉, 等. 湿热山区强骨架密实型沥青混合料FDAC高温稳定性研究[J]. 中外公路, 2021,41(3): 318-322. LI Xiaolong, SHEN Junan, DU Hui, et al. Study on high-temperature stability of asphalt concrete with strong framework and dense structure in hot and humid mountain area[J]. Journal of China & Foreign Highway, 2021, 41(3): 318-322. [23] 高虎, 杨新华, 唐鹏. 沥青混合料车辙变形的离散元数值模拟[J]. 固体力学学报, 2018,39(3): 277-283. GAO Hu, YANG Xinhua, TANG Peng. Discrete element numerical simulation on rutting deformation of asphalt mixture[J]. Chinese Journal of Solid Mechanics, 2018, 39(3): 277-283. [24] MAJIDI B, TAGHAVI S M, FAFARD M, et al. Discrete element method modeling of the rheological properties of coke/pitch mixtures[J]. Materials, 2016, 9(5): 334. [25] GRAZIANI A, CANESTRARI F, CARDONE F, et al. Time–temperature superposition principle for interlayer shear strength of bituminous pavements[J]. Road Materials and Pavement Design, 2017, 18(sup2): 12-25. [26] RAPOSEIRAS A C, CASTRO-FRESNO D, VEGA-ZAMANILLO A, et al. Test methods and influential factors for analysis of bonding between bituminous pavement layers[J]. Construction and Building Materials, 2013, 43: 372-381. [27] LEE S L, MANNAN M A, WAN IBRAHIM W H. Shear strength evaluation of composite pavement with geotextile as reinforcement at the interface[J]. Geotextiles and Geomembranes, 2020, 48(3): 230-235. [28] GHALY N, IBRAHIM I, NOAMY E M. Tack Coats for asphalt paving[J]. Egyptian Journal of Petroleum, 2014, 23: 61-65.
Included in
Construction Engineering and Management Commons, Other Civil and Environmental Engineering Commons, Statistical Methodology Commons, Structural Materials Commons, Transportation Engineering Commons